- A geometric series has first term a and common ratio r. The second term of the series is 4 and the sum to infinity of the series is 25.
 - (a) Show that $25r^2 25r + 4 = 0$.

(4)

(b) Find the two possible values of r.

(2)

(c) Find the corresponding two possible values of a.

(2)

(d) Show that the sum, S_n , of the first n terms of the series is given by

$$S_n = 25(1 - r^n).$$

(1)

Given that r takes the larger of its two possible values,

(e) find the smallest value of n for which S_n exceeds 24.

(2)

$$S_{\infty} = \frac{a}{1-r} = 25$$

$$S_{\infty} = \frac{4}{1-r} = 25$$

$$\frac{4}{c} = 25(1-c)$$

$$4 = 25r(1-r)$$

 $4 = 25r - 25r^{2}$

$$25r^2 - 25r + 4 = 0$$

4

$$a = \frac{1}{5} = 4^{\frac{1}{7}} = 20$$

$$\begin{cases} a = 20 & \begin{cases} a = 5 \\ r = 4 \end{cases} \end{cases}$$

$$S_{n} = \frac{a(1-r^{n})}{1-r}$$

$$a = \frac{20}{r-r}$$

$$S_{n} = \frac{20(1-r^{n})}{1-\frac{2}{5}} = \frac{20(1-r^{n})}{\frac{4}{5}}$$

$$= 25(1-r^{n})$$

$$a = 5$$

$$S_{n} = \frac{20(1-r^{n})}{1-\frac{2}{5}} = \frac{20(1-r^{n})}{\frac{4}{5}}$$

$$= 25(1-r^{n})$$

$$S_{n} = \frac{5(1-r^{n})}{1-\frac{4}{5}} = \frac{5(1-r^{n})}{\frac{7}{5}}$$

$$= 25(1-r^{n})$$

;.
$$S_n = 25(1-r^n)$$

e)
$$r = \frac{4}{5}$$
 $a = 5$
 $S_n = 25(1-r^n)$
 $S_n > 24$

$$\therefore 25(1-r^n) > 24$$

$$1-r^n > \frac{24}{25}$$

$$1-\frac{24}{25} > r^n$$

$$\frac{1}{10004} > 1n008^n$$

physicsandmathstutor.com

June 2013

1. The first three terms of a geometric series are

18, 12 and p

respectively, where p is a constant.

Find

(a) the value of the common ratio of the series,

(1)

(b) the value of p,

(1)

(c) the sum of the first 15 terms of the series, giving your answer to 3 decimal places.

(2)

2nd ar = 12

3rd ar2 = P

3 ÷0 ac = r = 12 = 2

$$\frac{\rho}{12} = \frac{2}{3}$$

$$S_n = \frac{\alpha(1-r^n)}{1-r}$$

b)
$$\frac{\rho}{3 \div 2} = \frac{2}{3}$$
 $3\rho = 24$ $\rho = 8$

c) $S_n = \frac{\alpha(1-r^n)}{1-r}$ $S_{15} = \frac{18(1-(\frac{2}{3})^{5})}{(1-\frac{2}{3})}$

6. The first term of a geometric series is 20 and the common ratio is $\frac{7}{8}$

The sum to infinity of the series is S_{∞}

(a) Find the value of S_{∞}

(2)

The sum to N terms of the series is S_N

(b) Find, to 1 decimal place, the value of S_{12}

(2)

(4)

(c) Find the smallest value of N, for which

$$S_{\infty} - S_N < 0.5$$

a) a = 20 $r = \frac{7}{8}$

 $S = \frac{a}{1-r} = \frac{20}{1-\frac{2}{8}} = \frac{20}{\frac{1}{8}} = 160$

- $S_{1} = \frac{\alpha(1-r^{n})}{1-r} \qquad S_{12} = \frac{20(1-(\frac{7}{6})^{12})}{1-\frac{7}{6}} = 127.8$

$$r^{N} < \frac{0.5}{160}$$

$$r^{N} < \frac{1}{320}$$

$$\ln r^{N} < \ln \left(\frac{1}{320}\right)$$

$$N \ln r < \ln \left(\frac{1}{320}\right)$$

$$N > \frac{\ln \left(\frac{1}{320}\right)}{\ln \left(\frac{7}{8}\right)}$$

$$N > 43.198$$

$$Smallest N N = 44$$