- The first term of a geometric series is 120. The sum to infinity of the series is 480.
 - (a) Show that the common ratio, r, is $\frac{3}{4}$.

$$S_{\infty} = \frac{4}{1-C} \tag{3}$$

- Find, to 2 decimal places, the difference between the 5th and 6th term.
- (2)

Calculate the sum of the first 7 terms. (c)

(2)

The sum of the first n terms of the series is greater than 300.

(d) Calculate the smallest possible value of n.

(Total 11 marks)

$$480 = \frac{120}{1-c}$$

$$480(1-r) = 120$$

$$1-r = \frac{120}{40}$$

$$r = \frac{3}{4}$$

$$5^{\text{th}}$$
 term = ar^4 = 120×0.75^4 = 37.96875
 6^{th} term = ar^5 = 120×0.75^5 = 28.4765625 - 9.49

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_7 = \frac{120(1-0.75^7)}{1-0.75}$$

$$S_7 = 415.93$$

$$S_{n} = \frac{a(1-r^{n})}{1-r} > 300$$

$$\frac{120(1-0.75^{n})}{\frac{1}{4}} > 300$$

$$120(1-0.75^{n}) > 75$$

$$1-0.75^{n} > \frac{75}{120}$$

$$1-\frac{75}{120} > 0.75^{n}$$

$$\frac{45}{120} > 0.75^{n}$$

$$\log(\frac{45}{120}) > \log 0.75^{n}$$

$$\log(\frac{45}{120}) > n \log 0.75$$

$$\log(\frac{45}{120}) < n$$

$$\log(\frac{45}{120}) < n$$

$$3.409 < n$$

Smallest n n=4