Conditional Probability

A and B are said to be independent
if end only if
$$P(A_AB) = P(A) \times P(B)$$

 $P(AB)$ The probability of A given
that B has happened is given
by
 $P(AB) = \frac{P(A_AB)}{P(B)}$
This provides an alternative test
for independence
Events A and B are independent
if $P(AB) = P(B)$
if $P(AB) = P(B)$
if $P(BA) = P(B)$
is the probability of A is unchanged by
the fact B has happened.
Suppose $P(AB) = P(A)$
 $= \frac{P(AB)}{P(B)} = P(A)$

 $P(A_AB) = P(A) \times P(B)$ which is the original condition for independence

Exercise 28 Pege 23
Prate 28 Pege 23
Prate 11 18 29
Famile 14 17 31
Total 25 35 60
a)
$$P(male) = \frac{29}{60}$$

b) $P(Corry | Trale) = \frac{18}{29}$
c) $P(male|Corry) = \frac{18}{39}$
d) $P(lizze|Femle) = \frac{14}{31}$