A and B are said to be independent if and only if $P(A, B)=P(A) \times P(B)$ $P(A \backslash B)$ The probability of A given that B has happened is given by

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

This provides an alternative test for independence

Events A and B are independent
if $P(A \backslash B)=P(A)$
or $\quad P(B \backslash A)=P(B)$
ie. the probability of A is unchanged by the fact B has happened.

Suppose $P(A \backslash B)=P(A)$

$$
\Rightarrow \quad \frac{P(A \cap B)}{P(B)}=P(A)
$$

$$
P(A \cap B)=P(A) \times P(B)
$$

which is the original condition for independence

Exercise 2B Page 23

	Pizza	Curry	Total
Make	11	18	29
Fence	14	17	31
Total	25	35	60

a) $P($ Male $)=\frac{29}{60}$
b) $P($ Curry \backslash Male $)$

$$
=\frac{18}{29}
$$

C) $P($ Male \backslash Curry $)=\frac{18}{3 q}$
d) $P\left(P_{1 z 2 a} \backslash F_{\text {lib }}\right)$

$$
=\frac{14}{31}
$$

