(a) Use the double angle formulae and the identity

$$cos(A+B) \equiv cos A cos B - sin A sin B$$

to obtain an expression for $\cos 3x$ in terms of powers of $\cos x$ only.

(4)

(b) (i) Prove that

$$\frac{\cos x}{1+\sin x} + \frac{1+\sin x}{\cos x} \equiv 2\sec x, \qquad x \neq (2n+1)\frac{\pi}{2}.$$

(4)

(ii) Hence find, for $0 < x < 2\pi$, all the solutions of

$$\frac{\cos x}{1+\sin x} + \frac{1+\sin x}{\cos x} = 4.$$

(3)

Question 6 continued	blank

5. (a) Given that $\sin^2 \theta + \cos^2 \theta \equiv 1$, show that $1 + \cot^2 \theta \equiv \csc^2 \theta$.	(2)
(b) Solve, for $0 \le \theta < 180^{\circ}$, the equation	
$2 \cot^2 \theta - 9 \csc \theta = 3,$	
giving your answers to 1 decimal place.	(6)

6. (a) (i) By writing $3\theta = (2\theta + \theta)$, show that

$$\sin 3\theta = 3\sin \theta - 4\sin^3\theta.$$

(4)

(ii) Hence, or otherwise, for $0 < \theta < \frac{\pi}{3}$, solve

$$8\sin^3\theta - 6\sin\theta + 1 = 0.$$

Give your answers in terms of π .

(5)

(b) Using $\sin(\theta - \alpha) = \sin\theta\cos\alpha - \cos\theta\sin\alpha$, or otherwise, show that

$$\sin 15^\circ = \frac{1}{4}(\sqrt{6} - \sqrt{2}).$$

(4)

16

Question 6 continued	blank

2.	(a)	Use the identity	$\cos^2\theta + \sin^2\theta = 1$	to prove that	$\tan^2\theta = \sec^2\theta - 1.$	
						(2)

(b) Solve, for $0 \le \theta \le 360^\circ$, the equation

$$2\tan^2\theta + 4\sec\theta + \sec^2\theta = 2$$

(6)

Solve		
	$\csc^2 2x - \cot 2x = 1$	
for $0 \leqslant x \leqslant 180^{\circ}$.		(7)
		(1)

1. (a) Show that

$$\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta$$

(2)

(b) Hence find, for $-180^{\circ} \le \theta < 180^{\circ}$, all the solutions of

$$\frac{2\sin 2\theta}{1+\cos 2\theta} = 1$$

Give your answers to 1 decimal place.

(3)
