J anuary 2008
 6664 Core Mathematics C2
 Mark Scheme

Question Number	Scheme	Marks

2.	(a) $\|$Complete method, using terms of form ar r^{k}, to find r [e.g. Dividing $a r^{6}=80$ by $a r^{3}=10$ to find $r ; r^{6}-r^{3}=8$ is M0] $r=2$ Complete method for finding a [e.g. Substituting value for r into equation of form $a r^{k}=10$ or 80 and finding a value for $a]$.	M1

(c)	$(8 a=10) \quad a=\frac{5}{4}=1 \frac{1}{4} \quad$ (equivalent single fraction or 1.25) Substituting their values of a and r into correct formula for sum. $S=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{5}{4}\left(2^{20}-1\right) \quad(=1310718.75) \quad 1310719 \text { (only this) }$	A1 (2) M1 A1 (2) [6]
Notes:	(a) M1: Condone errors in powers, e.g. $a r^{4}=10$ and/or $a r^{7}=80$, A1: For $r=2$, allow even if $a r^{4}=10$ and $a r^{7}=80$ used (just these) (M mark can be implied from numerical work, if used correctly) (b) M1: Allow for numerical approach: e.g. $\frac{10}{r_{c}{ }^{3}} \leftarrow \frac{10}{r_{c}{ }^{2}} \leftarrow \frac{10}{r_{c}} \leftarrow 10$ In (a) and (b) correct answer, with no working, allow both marks. (c) Attempt 20 terms of series and add is M1 (correct last term 655360) If formula not quoted, errors in applying their a and/or r is M0 Allow full marks for correct answer with no working seen.	

J une 2008
 Core Mathematics C2
 Mark Scheme

Question Number	Scheme Marks
(a) (b) (c) (d)	Initial step: Two of: $a=k+4$, $a r=k, a r^{2}=2 k-15$ Or one of: $r=\frac{k}{k+4}, \quad r=\frac{2 k-15}{k}, \quad r^{2}=\frac{2 k-15}{k+4}$, Or $k=\sqrt{(k+4)(2 k-15)}$ or even $k^{3}=(k+4) k(2 k-15)$ $\begin{equation*} k^{2}=(k+4)(2 k-15), \text { so } k^{2}=2 k^{2}+8 k-15 k-60 \tag{} \end{equation*}$ M1, A1 Proceed to $k^{2}-7 k-60=0$ $\begin{equation*} (k-12)(k+5)=0 \quad k=12 \tag{*} \end{equation*}$ Common ratio: $\frac{k}{k+4}$ or $\frac{2 k-15}{k}=\frac{12}{16}\left(=\frac{3}{4}\right.$ or 0.75$)$ $\frac{a}{1-r}=\frac{16}{(1 / 4)}=64$
(a) (b) (c) (d)	M1: The 'initial step', scoring the first M mark, may be implied by next line of proof M1: Eliminates a and r to give valid equation in k only. Can be awarded for equation involving fractions. A1 : need some correct expansion and working and answer equivalent to required quadratic but with uncollected terms. Equations involving fractions do not get this mark. (No fractions, no brackets - could be a cubic equation) A1: as answer is printed this mark is for cso (Needs $=0$) All four marks must be scored in part (a) M1: Attempt to solve quadratic A1: This is for correct factorisation or solution and $k=12$. Ignore the extra solution ($k=$ -5 or even $k=5$), if seen. Substitute and verify is M1 A0 Marks must be scored in part (b) M1: Complete method to find r Could have answer in terms of k A1: 0.75 or any correct equivalent Both Marks must be scored in (c) M1: Tries to use $\frac{a}{1-r}$, (even with $r>1$). Could have an answer still in terms of k. A1: This answer is 64 cao.

Question Number	Scheme		Marks
Q5 (a)	$324 r^{3}=96$ or $r^{3}=\frac{96}{324}$ or $r^{3}=\frac{8}{27}$		M1
	$r=\frac{2}{3}$	(*)	Alcso (2)
(b)	$a\left(\frac{2}{3}\right)^{2}=324 \quad \text { or } \quad a\left(\frac{2}{3}\right)^{5}=96 \quad a=\ldots,$	729	M1, A1 (2)
(c)	$\mathrm{S}_{15}=\frac{729\left(1-\left[\frac{2}{3}\right]^{15}\right)}{1-\frac{2}{3}},=2182.00 \ldots$	(AWRT 2180)	M1A1ft, (3)
(d)	$\mathrm{S}_{\infty}=\frac{729}{1-\frac{2}{3}}, \quad=2187$		M1, A1 (2) [9]

(a) M1 for forming an equation for r^{3} based on 96 and 324 (e.g. $96 r^{3}=324$ scores M1). The equation must involve multiplication/division rather than addition/subtraction.
A1 Do not penalise solutions with working in decimals, providing these are correctly rounded or truncated to at least 2 dp and the final answer $2 / 3$ is seen.
Alternative: (verification)
M1 Using $r^{3}=\frac{8}{27}$ and multiplying 324 by this (or multiplying by $r=\frac{2}{3}$ three times).
A1 Obtaining 96 (cso). (A conclusion is not required).
$324 \times\left(\frac{2}{3}\right)^{3}=96$ (no real evidence of calculation) is not quite enough and scores M1 A0.
(b)

M1 for the use of a correct formula or for 'working back' by dividing by $\frac{2}{3}$ (or by their r) twice from 324 (or 5 times from 96).
Exceptionally, allow M1 also for using $a r^{3}=324$ or $a r^{6}=96$ instead of $a r^{2}=324$ or $a r^{5}=96$, or for dividing by r three times from 324 (or 6 times from 96)... but no other exceptions are allowed.
(c)

M1 for use of sum to 15 terms formula with values of a and r. If the wrong power is used, e.g. 14, the M mark is scored only if the correct sum formula is stated.
$1^{\text {st }}$ A1ft for a correct expression or correct ft their a with $r=\frac{2}{3}$.
$2^{\text {nd }}$ A1 for awrt 2180, even following 'minor inaccuracies'.
Condone missing brackets round the $\frac{2}{3}$ for the marks in part (c).
Alternative:
M1 for adding 15 terms and $1^{\text {st }}$ A1ft for adding the 15 terms that ft from their a and $r=\frac{2}{3}$.
(d) M1 for use of correct sum to infinity formula with their a. For this mark, if a value of r different from the given value is being used, M1 can still be allowed providing $|r|<1$.

Question Number	Scheme	Marks
Q6 (a) (b) (c) (d)	$\begin{aligned} & \begin{aligned} & 18000 \times(0.8)^{3} \quad=£ 9216 * \quad \text { [may see } \frac{4}{5} \text { or } 80 \% \text { or equivalent]. } \\ & 18000 \times(0.8)^{n}<1000 \\ & n \log (0.8)<\log \left(\frac{1}{18}\right) \text { so } n=13 . \\ & n>\frac{\log \left(\frac{1}{18}\right)}{\log (0.8)}=12.952 \ldots .=£ 314.70 \text { or } £ 314.71 \\ & u_{5}=200 \times(1.12)^{4}, \quad \text { awrt } £ 7460 \end{aligned} \\ & S_{15}=\frac{200\left(1.12^{15}-1\right)}{1.12-1} \text { or } \frac{200\left(1-1.12^{15}\right)}{1-1.12},=7455.94 \ldots . . \quad \end{aligned}$	B1cso (1) M1 M1 A1 cso (3) M1, A1 (2) M1A1, A1 (3) [9]
(a) (b) (c) (d)	B1 NB Answer is printed so need working. May see as above or $\times 0.8$ in three steps giving 14400, 11520, 9216. Do not need to see $£$ sign but should see 9216 . $1^{\text {st }} \mathrm{M} 1$ for an attempt to use nth term and 1000. Allow n or $n-1$ and allow $>$ or $=$ $2^{\text {nd }}$ M1 for use of logs to find n Allow n or $n-1$ and allow $>$ or $=$ A1 Need $n=13$ This is an accuracy mark and must follow award of both M marks but should not follow incorrect work using $n-1$ for example. Condone slips in inequality signs here. M1 for use of their a and r in formula for $5^{\text {th }}$ term of GP A1 cao need one of these answers - answer can imply method here NB 314.7 - A0 M1 for use of sum to 15 terms of GP using their a and their r (allow if formula stated correctly and one error in substitution, but must use n not $n-1$) $1^{\text {st }}$ A1 for a fully correct expression (not evaluated)	
(b) (c) (d)	Alternative Methods Trial and Improvement See 989.56 (or 989 or 990) identified with 12, 13 or 14 years for first M1 See 1236.95 (or 1236 or 1237) identified with 11,12 or 13 years for second M1 Then $n=13$ is A1 (needs both Ms) Special case $18000 \times(0.8)^{n}<1000$ so $n=13$ as $989.56<1000$ is M1M0A0 (not discounted $n=12$) May see the terms 224, 250.88, 280.99, 314.71 with a small slip for M1 A0, or done accurately for M1A1 Adds 15 terms $200+224+250.88+\ldots \quad+(977.42) \quad$ M1 Seeing 977... is A1 Obtains answer 7455.94 A1 or awrt £7460 NOT 7450	

