1. (a) A population is collection of all items

B1 1
Note
B1 - collection/group all items - need to have /imply all eg entire/complete/every
(b) (A random variable) that is a function of the sample which contains

B1 1 no unknown quantities/parameters.

Note

B1 - needs function/calculation(o.e.) of the sample/random
variables/observations and no unknown quantities/parameters(o.e.)
NB do not allow unknown variables
e.g. "A calculation based solely on observations from a given sample." B1
"A calculation based only on known data from a sample" B1
"A calculation based on known observations from a sample" B0
Solely/only imply no unknown quantities
(c) The voters in the town

Percentage/proportion voting for Dr Smith

Note

B1 - Voters
Do not allow 100 voters.
B1 - percentage/ proportion voting (for Dr Smith)
the number of people voting (for Dr Smith)
Allow 35\% of people voting (for Dr Smith)
Allow 35 people voting (for Dr Smith)
Do not allow 35\% or 35 alone
(d) Probability Distribution of those voting for Dr Smith from all possible samples (of size 100)

Note
B1 - answers must include all three of these features
(i) All possible samples,
(ii) their associated probabilities,
(iii) context of voting for Dr Smith.
e.g "It is all possible values of the percentage and their associated probabilities." B0 no context
2. (a)

x	1 p	2 p
$\mathrm{P}(X=x)$	$\frac{1}{4}$	$\frac{3}{4}$

$$
\begin{gathered}
\mu=1 \times \frac{1}{4}+2 \times \frac{3}{4}=\frac{7}{4} \text { or } 1 \frac{3}{4} \text { or } 1.75 \\
\begin{aligned}
\sigma^{2} & =1^{2} \times \frac{1}{4}+2^{2} \times \frac{3}{4}-\left(\frac{7}{4}\right)^{2} \\
& =\frac{3}{16} \text { or } 0.1875
\end{aligned}
\end{gathered}
$$

Note

B1 1.75 oe
M1 for using $\sum\left(x^{2} p\right)-\mu^{2}$
A1 0.1875 oe
(b) $(1,1,1),(1,1,2)$ any order, $(1,2,2)$ any order, $(2,2,2)$

B1
$(1,2,1)(2,1,1)(2,1,2)(2,2,1) \quad$ all 8 cases considered.
B1 2
May be implied by 3 *
$(1,1,2)$ and $3 *(1,2,2)$

Note

ignore repeats
(c)

\bar{x}	1	$\frac{4}{3}$	$\frac{5}{3}$	2
$\mathrm{P}(\bar{X}=\bar{x})$	$\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}=\frac{1}{64}$	$3 \times \frac{1}{4} \times \frac{1}{4} \times \frac{3}{4}=\frac{9}{64}$	$3 \times \frac{1}{4} \times \frac{3}{4} \times \frac{3}{4}=\frac{27}{64}$	$\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}=\frac{27}{64}$

Note

$1^{\text {st }}$ B1 4 correct means (allow repeats)
$1^{\text {st }} \mathrm{M} 1$ for p^{3} for either of the ends
$1^{\text {st }}$ A1 for $1 / 64$ or awrt 0.016 and $27 / 64$ or awrt
0.422
$2^{\text {nd }}$ M1 $3 \times p^{2}(1-p)$ for either of the middle two
$0<p<1$
May be awarded for finding the probability of the 3 samples with mean of either $4 / 3$ or $5 / 3$.
$2^{\text {nd }}$ A1 for 9/64 (or 3/64 three times) and 27/64
(or 9/64 three times) accept awrt 3dp.
$3^{\text {rd }}$ A1 fully correct table, accept awrt 3dp.
3. (a) A statistic is a function of $X_{1}, X_{2}, \ldots X_{n}$ B1
that does not contain any unknown parameters

Note

Examples of other acceptable wording:
B1 e.g. is a function of the sample or the data / is a quantity calculated from the sample or the data / is a random variable calculated from the sample or the data

B1 e.g. does not contain any unknown parameters/quantities contains only known parameters/quantities only contains values of the sample
Y is a function of $X_{1}, X_{2}, \ldots X_{n}$ that does not contain any unknown parameters B1B1
is a function of the values of a sample with no unknowns
is a function of the sample values B1B0
is a function of all the data values B1B0
A random variable calculated from the sample B1B0
A random variable consisting of any function B0B0
A function of a value of the sample B1B0
A function of the sample which contains no othervalues/ parametersB1B0
(b) The probability distribution of Y or the distribution of all possible values of Y (o.e.)

Note

Examples of other acceptable wording
All possible values of the statistic together with their associated probabilities
(c) Identify (ii) as not a statistic B1

Since it contains unknown parameters $\underline{\mu \text { and } \sigma}$. dB1

Note

$1^{\text {st }} \mathrm{B} 1$ for selecting only (ii)
$2^{\text {nd }} \mathrm{B} 1$ for a reason. This is dependent upon the first B1. Need to mention at least one of mu (mean) or sigma (standard deviation or variance) or unknown parameters.
Examples
since it contains mu B1
since it contains sigma B1
since it contains unknown parameters/quantities B1
since it contains unknowns B0
4. (a) A census is when every member of the population is investigated.

B1
B1 Need one word from each group
(1) Every member /all items / entire /oe
(2) population/collection of individuals/sampling frame/oe
enumerating the population on its own gets B0
(b) There would be no cookers left to sell.

B1 Idea of Tests to destruction. Do not accept cheap or quick
(c) A list of the unique identification numbers of the cookers.

B1 Idea of list/ register/database of cookers/serial numbers
(d) A cooker

B1 cooker(s) / serial number(s)
The sample of 5 cookers or every $400^{\text {th }}$ cooker gets B1
5. (a) Saves time / cheaper / easier

B1 1
any one
or
A census / asking all members takes a long time or is expensive or difficult to carry out
(b) List, register or database of all club members / golfers
or
Full membership list
(c) Club member(s)

B1 1
6. (a)

X	1	2	5
$\mathrm{P}(X=x)$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$

Mean $=1 \times \frac{1}{2}+2 \times \frac{1}{3}+5 \times \frac{1}{6}=2$ or $0.02 \Sigma x . p(x)$ need $1 / 2$ and $1 / 3$ M1 A1
Variance $=1^{2} \times \frac{1}{2}+2^{2} \times \frac{1}{3}+5^{2} \times \frac{1}{6}-2^{2}=2 \quad$ or $0.0002 \quad$ M A1 4
(b) $\quad \Sigma x^{2} \cdot p(x)-\lambda^{2}$
$(1,1)$
$\begin{array}{lllll}(1,2) \text { and }(2,1) & & & \text { B2 } & \\ (1,5) \text { and }(5,1) & \text { LHS } & -1 & \text { B1 } & 3\end{array}$
e.e.
$(2,2)$
$(2,5)$ and $(5,2) \quad$ repeat of "theirs" on RHS B1 $(5,5)$
(c)

\bar{x}	1	1.5	2	3	3.5	5
$\mathrm{P}(\bar{X}=\bar{x})$	$\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{3} \times \frac{1}{3}=\frac{1}{9}$	$\frac{1}{6}$	$2 \times \frac{1}{3} \times \frac{1}{6}=\frac{1}{9}$	$\frac{1}{36}$
					$1 / 4$	M1A1
					M1 M2	6

7. (a) Individual member or element of the population or sampling frame
(b) A list of all sampling units or all the population

B1 1
(c) All possible samples are chosen from a population; the values of B1 B1 2 a statistic and the associated probabilities is a sampling distribution
8. (a) (i) A collection of individuals or items B1
(ii) A list of all sampling units in the population B1

B1 2
(b) Not always possible to keep this list up to date B1 1
(c) (i) eg:- Pupils in year 12 - small easily listed population B1 Population known \& easily accessed B1
$\begin{array}{lll}\text { (ii) } \begin{array}{l}\text { Students in a University - large not easily listed population } \\ \text { Population known but too time consuming/expensive }\end{array} & \text { B1 } \\ \text { to interview all of them } & \text { B1 }\end{array}$

OR
(c) (i) Definition of census by example B1
(ii) Definition of sample by example

B1
9. (a) A list of (all) the members of the population B1 1 A random variable that is a function of a random sample that contains no unknown parameters

B1 B1 2
10. (a) List of patients registered with the practice.

Require 'list' or 'register' or database or similar
B1
B1 1
(b) The patient(s)
(c) Adv: Quicker, cheaper, easier, used when testing results in destruction of item, quality of info about each sampling unit is often better. Any one

Disadv: Uncertainty due to natural variation, uncertainty due to bias, possible bias as sampling frame incomplete, bias due to subjective choice of sample, bias due to non-response

Any one
(d) Non-response due to patients registered with the practice but who have left the area

B1 1
11. (a) All subscribers to the magazine
(b) A list of all members that had paid their subscriptions
(c) Members who have paid
(d) Advantage: total accuracy

Disadvantage: time consuming to obtain data and analyse it
(e) Let X represent the number agreeing to change the name
$\therefore X \sim \mathrm{~B}(25,0.4)$
$\mathrm{P}(X=10)=\mathrm{P}(X \leq 10)-\mathrm{P}(X \leq 9)=0.1612$ M1 A1 3
(f) $\quad \mathrm{H}_{0}: p=0.40, \mathrm{H}_{1}: p<0.40$

B1, B1
$\mathrm{P}(X \leq 6)=0.0736>0.05 \Rightarrow$ not significant
M1 A1
No reason to reject H_{0} and conclude \% is less than the editor believes
A1
5
(g) Let X represent the number agreeing to change the name

$$
\begin{array}{lr}
\therefore X \sim \mathrm{~B}(200,0.4) & \\
\mathrm{P}(71 \leq X<83) \approx \mathrm{P}(70.5 \leq Y<82.5) \text { where } Y \sim \mathrm{~N}(80,48) \\
\approx \mathrm{P}\left(\frac{70.5-80}{\sqrt{48}} \leq X<\frac{82.5-80}{\sqrt{48}}\right) & \text { B1 B1 } \\
\approx \mathrm{P}(-1.37 \leq X<0.36) & \text { M1 M1 } \\
=0.5533 & \text { A1 A1 } \\
\text { A1 }
\end{array}
$$

A1 7
12. (a) D is continuous
(b) Sampling Frame is the list of competitors or their results, e.g. label the results $1-200$ and randomly select 36 of them
(c) $X=$ no. of competitors with $A=2$

$$
X \sim \mathrm{~B}\left(36, \frac{1}{3}\right)
$$

$$
X \approx \sim \mathrm{~N}(12,8)
$$

M1 A1
$\mathrm{P}(X \geq 20) \approx \mathrm{P}\left(Z \geq \frac{19.5-12}{\sqrt{8}}\right) \quad \pm \frac{1}{2},{ }^{\prime} z^{\prime} \quad$ M1 M1

$$
=\mathrm{P}(Z \geq 2.65 \ldots)
$$

$$
=1-0.9960=0.004
$$

(d) Probability is very low, so assumption of $\mathrm{P}(A=2)=\frac{1}{3}$ is unlikely. \quad B1 B1 A1 2 (Suggests $\mathrm{P}(A=2)$ might be higher.)

1. This was poorly done with very few candidates scoring full marks. Those candidates who had learnt standard definitions fared better than those who used their own understanding of the terms because they were less likely to leave out vital elements of the definitions. Even those who answered parts (a) and (b) correctly were then unable to apply these definitions in context.
In part (a) a large majority of candidates omitted to mention "all", or its equivalent.
Part (b) was well answered because many candidates used a standard definition. The most common errors were using "population" instead of "sample and omitting "no unknown parameters".

In part (c) a substantial number of candidates were confused about "the population in this case". Many thought it to be the sample of 100 voters. Others were closer to the truth with "all the residents of the town", but did not earn the mark because they had failed to distinguish between registered voters and residents. The statistic was more easily identified.
Part (d) was poorly answered with many candidates having no idea what a sampling distribution was and those that did being unable to put it into context. The sampling distribution of a proportion is arguably one of the hardest to get a grip on and articulate convincingly.
2. A high proportion of candidates attempted the first two parts of this question successfully, with the majority of candidates getting at least one mark for part (b). Those less successful in part (a) either misread the question and ended up with a denominator of 3 for the probabilities or confused formulae for calculating the mean and variance and used, for example, $\sum \frac{x p(x)}{n}$ for the mean or used $\mathrm{E}\left(X^{2}\right)$ for σ^{2}. The solution to part (c) proved beyond the capability of a minority of candidates but, for the majority, many exemplary answers were evident, reflecting sound preparation on this topic. Candidates who found all 8 cases in (b) usually gained four marks in part (c) for calculating the probabilities. For a small percentage of those candidates, calculating the means was difficult and hence completing the table correctly was not possible. A few candidates tried unsuccessfully to use the binomial to answer part (c).
3. This question was either answered very well with some text book solutions, although it seemed that only a minority of candidates earned all five marks, or badly with some strange descriptions. A reasonable number of candidates responded with comments that were very close to those in the mark scheme: evidence possibly of deliberate preparation and learning whilst others had internalised the concepts and provided responses in their own words. Whilst these responses might not have matched the 'official' answers, they nevertheless captured the essence of the concepts and were fully acceptable. There was confusion with the definition of statistics and parameters and part (b) was often attempted badly with candidates not knowing the definition of a probability distribution. On the whole this was one of the worst answered questions in the paper.

In part (a) candidates gave various definitions sometimes all muddled up. Not many candidates gave clear definitions but a common error was candidates writing "any function" or "no other quantities".
In part (b) again the candidates had mixed success. A significant minority scored marks by knowing that a sampling distribution involved all possible values of the statistic and their associated probabilities.

In part (c) many could identify (ii) correctly and a variety of reasons were seen. This part seemed to be done well even by candidates who could not answer part (a). It was interesting to
see that a relatively large proportion of candidates who earned both marks for part (c), were unable to achieve either of the two marks in part (a). There was a connection between parts (a) and (c) that many candidates failed to recognise. If those candidates who wrote "(ii) is not a statistic because it has unknown parameters" had then reflected on their responses to parts (a) and (c), they could then have gone back to modify their answer to (a) in order to earn more marks.
4. Nearly all candidates achieved at least one of the available marks but it was disappointing that there were not more attaining full marks.
(a) Too many candidates referred to the national census rather than a general definition. Some felt an enumeration was adequate and others failed to recognise that EVERY member had to be investigated.
(b) A failure to put the question in context and consider the consequences of testing every item meant that some candidates scored 0 in this part of the question. A few candidates did not read the question carefully and used cheap and quick as their reasons why a census should not be used when the question specifically said give a reason "other than to save time and cost".
(c) Many candidates mentioned a list; database or register and so attained the available mark. However, some did not seem to differentiate between the population and the sampling frame.
(d) Most candidates were able to identify the sampling units correctly, although those who had not scored in part (c) tended to say: "the sample of 5 cookers" in part (d).
5. Almost all candidates answered part (a) correctly, a minority failed to mention "census" or "asking all members" when answers referred to long time/expensive/difficult. In part (b) many candidates failed to include the word "all" in their answer. Quite a number did not know or understand the term sampling frame and wrote about sampling methods. Most candidates answered part (c) correctly, but there were occasional references to golfers rather than members or to those selected in the sample.
6. In part (a) many candidates were able to calculate the mean accurately, although some divided by random constants. Few drew up a table and many were unable to cope with the 5 p coins. The most common error in calculating the variance was the failure to subtract $\mathrm{E}(\mathrm{X})^{2}$. Most candidates correctly identified 6 possible samples but some failed to realise that combinations such as $(1,5)$ and $(5,1)$ were different and so missed the other 3 possibilities. Only a minority of candidates were able to attempt part (c) of the question with any success, with many candidates having no idea what was meant by 'the sampling distribution of the mean value of the samples'. Most did not find the mean values and if they did, then they were unable to find the probabilities (ninths were common).Very few candidates achieved full marks.
7. This question proved difficult to many candidates. Errors in this part (a) included the use of the word sample rather than population. Many candidates also gave an ambiguous response to part (b), often omitting to mention all sampling units or the whole population. Part (c) was done badly and whilst some candidates scored 1 mark very few achieved both marks. It appeared that many candidates had attempted to memorise the definition, but it came out garbled and confused with other concepts.
8. The bookwork required to answer this question was not remembered as well as it should have been. Many candidates could not define a population or a sampling frame in detail or know why they might be different. In part (c) many candidates were unable to give in sufficient detail a justified example of the use of a census and a sample.
9. Weaker students had difficulties with this question with a considerable number scoring 1 or 0 marks. In part (a) good candidates answered this correctly but for many there was confusion between a population and a sample and that the population must be in a list or equivalent. In part (b) those candidates who had learnt the basic definitions were able to answer this successfully.
10. Only a very few candidates achieved full marks. Most scored 2 or 3 out of the 5 available. Common errors were in part (c) where only a very small number could provide a valid disadvantage and in part (d) not all candidates realised the problem of having an incomplete (or not up-to-date) sampling frame.
11. This question also allowed candidates to score highly; indeed some otherwise poor papers were redeemed by good marks here. Most marks were lost in the opening parts where it is clear that candidates do not understand well enough the need for a degree of precision in defining terms such as population and sampling frame. Similarly it is a cause for concern that the majority of candidates talk about a census giving more accurate answers (even though this was allowed) rather than understanding the real differences between a sample and a census. Part (e) received a very high number of correct answers, and part (f), although less well done, did receive an encouragingly high number of good solutions, with context being well used. The most common mistakes were careless statements of the hypotheses and a decision to find $P(X=6)$. Part (g) was very well answered with a large number of candidates gaining full marks. Very few candidates used incorrect parameters in the normal approximation, but the most common cause of loss of marks was in an error in the use of either 70.5 or 82.5 even if a correct probability statement had been given earlier.
12. No Report available for this question.

