Recap

Partial Fractions 2

Repeated Linear Factors

Given that

$$
\frac{3+2 x^{2}}{(1+x)^{2}(1-4 x)}=\frac{A}{1+x}+\frac{B}{(1+x)^{2}}+\frac{C}{1-4 x},
$$

where A, B and C are constants, find B and C, and show that $A=0$.

$$
\begin{array}{rlr}
3+2 x^{2}=A(1+x)(1-4 x)+B(1-4 x)+C(1+x)^{2} \\
x=-1 \quad B+2(-1)^{2} & =B(1-4(-1)) & B=1 \\
5 & =5 B & \\
3+2\left(\frac{1}{4}\right)^{2} & =C\left(1+\frac{1}{4}\right)^{2} \\
\frac{25}{8} & =\frac{25}{16} C \\
\frac{25}{4} \times \frac{16^{2}}{28} & =C \\
2 & =C & \\
2 & =-4 A+C \\
2 & =-4 A+2 \\
\text { coeff ot } x^{2} & \\
2-2 & =-4 A \\
0 & =-4 A & \\
0 & =A
\end{array}
$$

