

| Topics | What students need to learn: |  |  |
| :---: | :---: | :---: | :---: |
|  | Content |  | Guidance |
| 8 <br> Integration <br> continued | 8.3 | Evaluate definite integrals; use a definite integral to find the area under a curve and the area between two curves | Students will be expected to be able to evaluate the area of a region bounded by a curve and given straight lines, or between two curves. This includes curves defined parametrically. <br> For example, find the finite area bounded by the curve $y=6 x-x^{2}$ and the line $y=2 x$ <br> Or find the finite area bounded by the curve $y=x^{2}-5 x+6$ and the curve $y=4-x^{2}$. |
|  | 8.4 | Understand and use integration as the limit of a sum. | Recognise $\int_{a}^{b} \mathrm{f}(x) \mathrm{d} x=\lim _{\delta x \rightarrow 0} \sum_{x=a}^{b} \mathrm{f}(x) \delta x$ |
|  | 8.5 | Carry out simple cases of integration by substitution and integration by parts; understand these methods as the inverse processes of the chain and product rules respectively <br> (Integration by substitution includes finding a suitable substitution and is limited to cases where one substitution will lead to a function which can be integrated; integration by parts includes more than one application of the method but excludes reduction formulae.) | Students should recognise integrals of the form $\int \frac{\mathrm{f}^{\prime}(x)}{\mathrm{f}(x)} \mathrm{d} x=\ln \mathrm{f}(x)+c$. <br> The integral $\int \ln x \mathrm{~d} x$ is required <br> Integration by substitution includes finding a suitable substitution and is limited to cases where one substitution will lead to a function which can be integrated; integration by parts includes more than one application of the method but excludes reduction formulae. |
|  | 8.6 | Integrate using partial fractions that are linear in the denominator. | Integration of rational expressions such as those arising from partial fractions, e.g. $\frac{2}{3 x+5}$ <br> Note that the integration of other rational expressions, such as $\frac{x}{x^{2}+5}$ and $\frac{2}{(2 x-1)^{4}}$ is also required (see previous paragraph). |
|  | 8.7 | Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions <br> (Separation of variables may require factorisation involving a common factor.) | Students may be asked to sketch members of the family of solution curves. |


| Topics | What students need to learn: |  | Guidance |
| :--- | :--- | :--- | :--- |
|  | Content | 8.8 | Interpret the solution of a <br> differential equation in the <br> context of solving a problem, <br> including identifying <br> Integration <br> continued |

