	What students need to learn:			
Topics	Conte	nt	Guidance	
2 Algebra and functions	2.1	Understand and use the laws of indices for all rational exponents.	$a^m \times a^n = a^{m+n}, a^m \div a^n = a^{m-n}, (a^m)^n = a^{mn}$ The equivalence of $a^{\frac{m}{n}}$ and $\sqrt[n]{a^m}$ should be known.	
	2.2	Use and manipulate surds, including rationalising the denominator.	Students should be able to simplify algebraic surds using the results $\left(\sqrt{x}\right)^2 = x, \sqrt{xy} = \sqrt{x}\sqrt{y}$ and $\left(\sqrt{x} + \sqrt{y}\right)\left(\sqrt{x} - \sqrt{y}\right) = x - y$	
	2.3	Work with quadratic functions and their graphs.	The notation f(x) may be used	
		The discriminant of a quadratic function, including the conditions for real and repeated roots.	Need to know and to use $b^2 - 4ac > 0$, $b^2 - 4ac = 0$ and $b^2 - 4ac < 0$	
		Completing the square.	$ax^{2}+bx+c=a\left(x+\frac{b}{2a}\right)^{2}+\left(c-\frac{b^{2}}{4a}\right)$	
		Solution of quadratic equations	Solution of quadratic equations by factorisation, use of the formula, use of a calculator and completing the square.	
		including solving quadratic equations in a function of the unknown.	These functions could include powers of x , trigonometric functions of x , exponential and logarithmic functions of x .	
	2.4	Solve simultaneous equations in two variables by elimination and by substitution, including one linear and one quadratic equation.	The quadratic may involve powers of 2 in one unknown or in both unknowns, e.g. solve $y = 2x + 3$, $y = x^2 - 4x + 8$ or $2x - 3y = 6$, $x^2 - y^2 + 3x = 50$	

	What students need to learn:			
Topics	Conte	nt	Guidance	
2	2.5	2.5 Solve linear and quadratic inequalities in a single variable and interpret such inequalities graphically,	e.g. solving	
Algebra and			ax+b>cx+d,	
functions			$px^2 + qx + r \ge 0,$	
continued			$px^2 + qx + r < ax + b$	
			and interpreting the third inequality as the range of x for which the curve $y = px^2 + qx + r$ is below the line with equation $y = ax + b$	
		including inequalities with brackets and fractions.	These would be reducible to linear or quadratic inequalities	
			e.g. $\frac{a}{x} < b$ becomes $ax < bx^2$	
		Express solutions through correct use of `and' and	So, e.g. $x < a$ or $x > b$ is equivalent to $\{x : x < a\} \cup \{x : x > b\}$	
	2.6	`or', or through set notation.	and $\{x : c < x\} \cap \{x : x < d\}$ is equivalent to $x > c$ and $x < d$	
		Represent linear and quadratic inequalities such as $y > x + 1$ and $y > ax^2 + bx + c$ graphically.	Shading and use of dotted and solid line convention is required.	
		Manipulate polynomials algebraically, including expanding brackets and collecting like terms, factorisation and simple algebraic division; use of the factor theorem.	Only division by $(ax + b)$ or $(ax - b)$ will be required. Students should know that if $f(x) = 0$ when $x = a$, then $(x - a)$ is a factor of $f(x)$.	
			Students may be required to factorise cubic expressions such as $x^3 + 3x^2 - 4$ and $6x^3 + 11x^2 - x - 6$.	
		Simplify rational expressions, including by factorising and cancelling, and algebraic	Denominators of rational expressions will be linear or quadratic, 1	
		division (by linear expressions only).	e.g. $\frac{1}{ax+b}$, $\frac{ax+b}{px^2+qx+r}$, $\frac{x^3+a^3}{x^2-a^2}$	

	What students need to learn:			
Topics	Content		Guidance	
2 Algebra and	2.7	Understand and use graphs of functions; sketch	Graph to include simple cubic and quartic functions,	
functions continued		curves defined by simple equations including polynomials	e.g. sketch the graph with equation $y = x^2(2x-1)^2$	
		The modulus of a linear function.	Students should be able to sketch the graphs of $y = ax + b $	
			They should be able to use their graph.	
			For example, sketch the graph with equation $y = 2x - 1 $ and use the graph to solve the equation $ 2x - 1 = x$ or the inequality $ 2x - 1 > x$	
		$y = \frac{a}{x}$ and $y = \frac{a}{x^2}$	The asymptotes will be parallel to the axes e.g. the asymptotes of the curve with equation $y = \frac{2}{x+a} + b$ are the	
		(including their vertical and horizontal asymptotes)	lines with equations $y = b$ and $x = -a$	
		Interpret algebraic solution of equations graphically; use intersection points of graphs to solve equations.		
		Understand and use proportional relationships and their graphs.	Direct proportion between two variables.	
			Express relationship between two variables using proportion " ∞ " symbol or using equation involving constant	
			e.g. the circumference of a semicircle is directly proportional to its diameter so $C \propto d$ or $C = kd$ and the graph of C against d is a straight line through the origin with gradient k .	

Topics	What students need to learn:			
	Content		Guidance	
2 Algebra and functions continued	2.8	Understand and use composite functions; inverse functions and their graphs.	The concept of a function as a one-one or many-one mapping from \mathbb{R} (or a subset of \mathbb{R}) to \mathbb{R} . The notation $f: x \mapsto$ and $f(x)$ will be used. Domain and range of functions.	
			Students should know that fg will mean 'do g first, then f^\prime and that if f^{-1} exists, then	
			$f^{-1}f(x) = ff^{-1}(x) = x$	
			They should also know that the graph of	
			$y = f^{-1}(x)$ is the image of the graph of	
			y = f(x) after reflection in the line $y = x$	
	2.9	Understand the effect of simple transformations on the graph of $y = f(x)$, including sketching associated graphs: y = af(x), y = f(x) + a, y = f(x + a), y = f(ax) and combinations of these transformations	Students should be able to find the graphs of $y = f(x) $ and $y = f(-x) $, given the graph of $y = f(x)$.	
			Students should be able to apply a combination of these transformations to any of the functions in the A Level specification (quadratics, cubics, quartics, reciprocal, $\frac{a}{x^2}$, $ x $, sin x , cos x , tan x , e^x and a^x) and sketch the resulting graph. Given the graph of $y = f(x)$, students should be able to sketch the graph of, e.g. $y = 2f(3x)$, or $y = f(-x) + 1$, and should be able to sketch (for example) $y = 3 + \sin 2x$, $y = -\cos\left(x + \frac{\pi}{4}\right)$	
		Decompose rational functions into partial fractions (denominators not more complicated than squared linear terms and with no more than 3 terms, numerators constant or linear).	Partial fractions to include denominators such as (ax + b)(cx + d)(ex + f) and $(ax + b)(cx + d)^2$. Applications to integration, differentiation and series expansions.	

Topics	What students need to learn: Content Guidance		
2 Algebra and functions continued	2.11	Use of functions in modelling, including consideration of limitations and refinements of the models.	For example, use of trigonometric functions for modelling tides, hours of sunlight, etc. Use of exponential functions for growth and decay (see Paper 1, Section 6.7). Use of reciprocal function for inverse proportion (e.g. pressure and volume).