Proof

The square root of 2 is irrational

Assume $\sqrt{2}$ is rational

$$
\begin{aligned}
\therefore \sqrt{2} & =\frac{p}{Q} \\
2 & =\frac{p^{2}}{Q^{2}} \\
2 Q^{2} & =p^{2}
\end{aligned}
$$

$$
\Rightarrow p^{2} \text { is even }
$$

$$
\Rightarrow P \text { is even }
$$

$$
\begin{aligned}
\sqrt{2} & =\frac{2 p}{Q} \\
2 & =\frac{4 p^{2}}{Q^{2}} \\
2 Q^{2} & =4 p^{2} \\
Q^{2} & =2 p^{2}
\end{aligned}
$$

$$
\Rightarrow Q^{2} \text { is even }
$$

$$
\Rightarrow Q \text { is even say } 2 q
$$

$$
\sqrt{2}=\frac{p}{Q}=\frac{2 p}{2 q}
$$

This contradicts P, Q being coprome
\therefore assumption $\sqrt{2}$ is rational was wrong Conclusion $\sqrt{2}$ is irrational

