7. (a) Express $\frac{2}{4-y^2}$ in partial fractions.		Leave blank
$4-y^2$	(3)	

Leave

3.
$$f(x) = \frac{27x^2 + 32x + 16}{(3x+2)^2(1-x)}, \quad |x| < \frac{2}{3}$$

Given that f(x) can be expressed in the form

$$f(x) = {A \over (3x+2)} + {B \over (3x+2)^2} + {C \over (1-x)},$$

(a) find the values of B and C and show that A = 0.

(4)

Leave blank

3. $f(x) =$	4-2x	= <u>A</u>	В	C	
J.	$I(\lambda)$ –	$\frac{2x}{(2x+1)(x+1)(x+3)}$	$\frac{1}{2x+1}$	$\overline{x+1}$	$\overline{x+3}$

(a) Find the values of the constants A, B and C.

(4)

Leave blank

5	$\frac{2x^2 + 5x - 10}{2x^2 + 5x - 10} \equiv A + C$	B_{\perp}	C
J•	$\frac{1}{(x-1)(x+2)} = A +$	x-1	x+2

(a) Find the values of the constants A, B and C.

(4)

X-7