7.

Figure 3

The curve C has parametric equations

$$x = \ln(t+2), \quad y = \frac{1}{(t+1)}, \quad t > -1.$$

The finite region R between the curve C and the x-axis, bounded by the lines with equations $x = \ln 2$ and $x = \ln 4$, is shown shaded in Figure 3.

(a) Show that the area of R is given by the integral

$$\int_0^2 \frac{1}{(t+1)(t+2)} \, \mathrm{d}t. \tag{4}$$

(b) Hence find an exact value for this area.

(6)

(c) Find a cartesian equation of the curve C, in the form y = f(x).

(4)

(d) State the domain of values for x for this curve.

(1)

	blank
Question 7 continued	Dialik
Question / continued	

8.

Figure 3

Figure 3 shows the curve C with parametric equations

$$x = 8\cos t$$
, $y = 4\sin 2t$, $0 \le t \le \frac{\pi}{2}$.

The point *P* lies on *C* and has coordinates $(4, 2\sqrt{3})$.

(a) Find the value of t at the point P.

(2)

The line l is a normal to C at P.

(b) Show that an equation for *l* is $y = -x\sqrt{3} + 6\sqrt{3}$.

(6)

The finite region R is enclosed by the curve C, the x-axis and the line x = 4, as shown shaded in Figure 3.

- (c) Show that the area of R is given by the integral $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} 64 \sin^2 t \cos t \, dt.$ (4)
- (d) Use this integral to find the area of R, giving your answer in the form $a + b\sqrt{3}$, where a and b are constants to be determined.

(4)

Question 8 continued		blank
		Q
	(Total 16 marks)	
	TOTAL FOR PAPER: 75 MARKS	
I	END	

7.

Figure 3

The curve C shown in Figure 3 has parametric equations

$$x = t^3 - 8t, \quad y = t^2$$

where t is a parameter. Given that the point A has parameter t = -1,

(a) find the coordinates of A.

(1)

The line l is the tangent to C at A.

(b) Show that an equation for l is 2x - 5y - 9 = 0.

(5)

The line l also intersects the curve at the point B.

(c) Find the coordinates of B.

(6)

Question 7 continued	blank
	Q'
(Total 12 marks)	
TOTAL FOR PAPER: 75 MARKS	
END	

(a) Using the identity $\cos 2\theta = 1 - 2\sin^2 \theta$, find $\int \sin^2 \theta d\theta$.

Figure 4

Figure 4 shows part of the curve C with parametric equations

$$x = \tan \theta$$
, $y = 2\sin 2\theta$, $0 \leqslant \theta < \frac{\pi}{2}$

The finite shaded region S shown in Figure 4 is bounded by C, the line $x = \frac{1}{\sqrt{3}}$ and the x-axis. This shaded region is rotated through 2π radians about the x-axis to form a solid of revolution.

(b) Show that the volume of the solid of revolution formed is given by the integral

$$k \int_{0}^{\frac{\pi}{6}} \sin^{2}\theta \, d\theta$$

where k is a constant.

(5)

(c) Hence find the exact value for this volume, giving your answer in the form $p\pi^2 + q\pi\sqrt{3}$, where p and q are constants.

(3)

	Leave blank
Question 8 continued	
	Q8
(Total 10 marks)	
TOTAL FOR PAPER: 75 MARKS	
END	

7.

Figure 2

Figure 2 shows a sketch of the curve C with parametric equations

$$x = 5t^2 - 4$$
, $y = t(9 - t^2)$

The curve C cuts the x-axis at the points A and B.

(a) Find the *x*-coordinate at the point *A* and the *x*-coordinate at the point *B*.

(3)

The region R, as shown shaded in Figure 2, is enclosed by the loop of the curve.

(b) Use integration to find the area of R.

(6)

	blank
Question 7 continued) oranic

4. A curve *C* has parametric equations

$$x = \sin^2 t, \quad y = 2 \tan t, \quad 0 \leqslant t < \frac{\pi}{2}$$

(a) Find $\frac{dy}{dx}$ in terms of t.

(4)

The tangent to C at the point where $t = \frac{\pi}{3}$ cuts the x-axis at the point P.

(b) Find the *x*-coordinate of *P*.

(6)

12

Question 4 continued	blank
	1

