2 Given that
$$y = 6x^{\frac{3}{2}}$$
, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.

Show, without using a calculator, that when
$$x = 36$$
 the value of $\frac{d^2y}{dx^2}$ is $\frac{3}{4}$. [5]

- 9 The equation of a cubic curve is $y = 2x^3 9x^2 + 12x 2$.
 - (i) Find $\frac{dy}{dx}$ and show that the tangent to the curve when x = 3 passes through the point (-1, -41).
 - (ii) Use calculus to find the coordinates of the turning points of the curve. You need not distinguish between the maximum and minimum. [4]
 - (iii) Sketch the curve, given that the only real root of $2x^3 9x^2 + 12x 2 = 0$ is x = 0.2 correct to 1 decimal place. [3]

10

Fig. 10

Fig. 10 shows a solid cuboid with square base of side x cm and height h cm. Its volume is 120 cm³.

(i) Find h in terms of x. Hence show that the surface area, $A \, \text{cm}^2$, of the cuboid is given by $A = 2x^2 + \frac{480}{x}$.

(ii) Find
$$\frac{dA}{dx}$$
 and $\frac{d^2A}{dx^2}$. [4]

(iii) Hence find the value of x which gives the minimum surface area. Find also the value of the surface area in this case. [5]