Circles Homework October Half-Term

Fig. 10
Fig. 10 shows a circle with centre $C(2,1)$ and radius 5 .
(i) Show that the equation of the circle may be written as

$$
\begin{equation*}
x^{2}+y^{2}-4 x-2 y-20=0 \tag{3}
\end{equation*}
$$

(ii) Find the coordinates of the points P and Q where the circle cuts the y-axis. Leave your answers in the form $a \pm \sqrt{b}$.
(iii) Verify that the point $\mathrm{A}(5,-3)$ lies on the circle.

Show that the tangent to the circle at A has equation $4 y=3 x-27$.

11 The points $\mathrm{A}(0,2), \mathrm{B}(7,9)$ and $\mathrm{C}(6,10)$ lie on the circumference of a circle, as shown in Fig.11.

Fig. 11
(i) Find the length of AC.

Prove that triangle $A B C$ is right-angled at B.
(ii) Hence show that the centre of the circle is $(3,6)$ and its radius is 5 .

Find the equation of the circle.
(iii) Find an equation for the tangent to the circle at C .

Find the coordinates of the points where this tangent crosses the axes.

10 A circle has equation $x^{2}+y^{2}=45$.
(i) State the centre and radius of this circle.
(ii) The circle intersects the line with equation $x+y=3$ at two points, A and B. Find algebraically the coordinates of A and B.

Show that the distance $A B$ is $\sqrt{162}$.
$11 \mathrm{~A}(9,8), \mathrm{B}(5,0)$ and $\mathrm{C}(3,1)$ are three points.
(i) Show that AB and BC are perpendicular.
(ii) Find the equation of the circle with AC as diameter. You need not simplify your answer.

Show that B lies on this circle.
(iii) BD is a diameter of the circle. Find the coordinates of D .

