Jan UU	J	an	08
--------	---	----	----

Question Number	Scheme		(S
3.	(a) $f(2) = 0.38 \dots$ $f(3) = -0.39 \dots$ Change of sign (and continuity) \Rightarrow root in $(2,3)$ * cs	M1 0 A1	(2)
	(b) $x_1 = \ln 4.5 + 1 \approx 2.50408$ $x_2 \approx 2.50498$ $x_3 \approx 2.50518$	M1 A1 A1	(3)
	(c) Selecting [2.5045, 2.5055], or appropriate tighter range, and evaluating at both ends. $f(2.5045) \approx 6 \times 10^{-4}$ $f(2.5055) \approx -2 \times 10^{-4}$ Change of sign (and continuity) \Rightarrow root $\in (2.5045, 2.5055)$ \Rightarrow root = 2.505 to 3 dp * cso	M1	(2)
	Note: The root, correct to 5 dp, is 2.50524		(2) [7]

Jun	08
-----	----

Question Number	Scheme		ŝ
7.	(a) $f(1.4) = -0.568 \dots < 0$		
	$f(1.45) = 0.245 \dots > 0$	M1	
	Change of sign (and continuity) $\Rightarrow \alpha \in (1.4, 1.45)$	A1	(2)
	(b) $3x^3 = 2x + 6$		
	$x^3 = \frac{2x}{3} + 2$		
	$x^2 = \frac{2}{3} + \frac{2}{x}$	M1 A1	
	$x = \sqrt{\left(\frac{2}{x} + \frac{2}{3}\right)} $ cso	A1	(3)
	(c) $x_1 = 1.4371$	B1	
	$x_2 = 1.4347$	B1	
	$x_3 = 1.4355$	B1	(3)
	(d) Choosing the interval $(1.4345, 1.4355)$ or appropriate tighter interval. f $(1.4345) = -0.01 \dots$	M1	
	$f(1.4355) = 0.003 \dots$	M1	
	Change of sign (and continuity) $\Rightarrow \alpha \in (1.4345, 1.4355)$		
	$\Rightarrow \alpha = 1.435$, correct to 3 decimal places * cso	A1	(3) [11]
	<i>Note</i> : $\alpha = 1.435304553$		

Jan 0

Question Number	Scheme		Marks	
7.	(a) $f'(x) = 3e^x + 3xe^x$	M1 A1		
	$3e^{x} + 3xe^{x} = 3e^{x}(1+x) = 0$			
	x = -1	M1 A1		
	$f(-1) = -3e^{-1}-1$	B1	(5)	
	(b) $x_1 = 0.2596$	B1		
	$ x_1 = 0.2570 \\ x_2 = 0.2571 $	B1		
	$x_2 = 0.2571$ $x_3 = 0.2578$	В1 B1	(3)	
	(c) Choosing $(0.25755, 0.25765)$ or an appropriate tighter interval. f $(0.25755) = -0.000379$	M1		
	$f(0.257\ 65) = 0.000\ 109\ \dots$	A1		
	Change of sign (and continuity) \Rightarrow root $\in (0.25755, 0.25765)$ * cso	A1		
	$(\Rightarrow x = 0.2576$, is correct to 4 decimal places)		(3)	
	<i>Note</i> : $x = 0.257\ 627\ 65\ \dots$ is accurate		[11]	

June 2009 6665 Core Mathematics C3 Mark Scheme

Question Number	Scheme		I	Marks	5
Q1 (a)	Iterative formula: $x_{n+1} = \frac{2}{(x_n)^2} + 2$, $x_0 = 2.5$				
	$x_{1} = \frac{2}{(2.5)^{2}} + 2$ $x_{1} = 2.32$ $x_{2} = 2.371581451$ $x_{3} = 2.355593575$ $x_{4} = 2.360436923$	An attempt to substitute $x_0 = 2.5$ into the iterative formula. Can be implied by $x_1 = 2.32$ or 2.320 Both $x_1 = 2.32(0)$ and $x_2 = awrt 2.372$ Both $x_3 = awrt 2.356$ and $x_4 = awrt 2.360$ or 2.36	M1 A1 A1	cso	(3)
(b)	Let $f(x) = -x^3 + 2x^2 + 2 = 0$				
	f(2.3585) = 0.00583577 f(2.3595) = −0.00142286 Sign change (and f(x) is continuous) therefore a root α is such that α ∈ (2.3585, 2.3595) ⇒ α = 2.359 (3 dp)	Choose suitable interval for <i>x</i> , e.g. [2.3585, 2.3595] or tighter any one value awrt 1 sf or truncated 1 sf both values correct, sign change and conclusion At a minimum, both values must be correct to 1sf or truncated 1sf, candidate states "change of sign,	M1 dM1 A1		(3)
		hence root".			[6]

Jan	1	0
-----	---	---

Question Number	Scheme		Marks
Q2 (a)	$f(x) = x^{3} + 2x^{2} - 3x - 11$ $f(x) = 0 \implies x^{3} + 2x^{2} - 3x - 11 = 0$ $\implies x^{2}(x+2) - 3x - 11 = 0$	Sets $f(x) = 0$ (can be implied) and takes out a factor of x^2 from $x^3 + 2x^2$, or x from $x^3 + 2x$ (slip).	M1
(b)	$\Rightarrow x^{2}(x+2) = 3x + 11$ $\Rightarrow \qquad x^{2} = \frac{3x + 11}{x+2}$ $\Rightarrow \qquad x = \sqrt{\left(\frac{3x + 11}{x+2}\right)}$ Iterative formula: $x_{n+1} = \sqrt{\left(\frac{3x_{n} + 11}{x_{n} + 2}\right)}$, $x_{1} = 0$	then rearranges to give the quoted result on the question paper.	A1 AG (2)
	$x_{2} = \sqrt{\left(\frac{3(0) + 11}{(0) + 2}\right)}$ $x_{2} = 2.34520788$ $x_{3} = 2.037324945$	An attempt to substitute $x_1 = 0$ into the iterative formula. Can be implied by $x_2 = \sqrt{5.5}$ or 2.35 or awrt 2.345 Both x_2 = awrt 2.345 and x_3 = awrt 2.037	M1 A1
(c)	$x_4 = 2.058748112$ Let $f(x) = x^3 + 2x^2 - 3x - 11 = 0$	$x_4 = $ awrt 2.059	A1 (3)
	f(2.0565) = -0.013781637 f(2.0575) = 0.0041401094 Sign change (and f(x) is continuous) therefore a root α is such that $\alpha \in (2.0565, 2.0575) \Rightarrow \alpha = 2.057$ (3 dp)	Choose suitable interval for <i>x</i> , e.g. [2.0565, 2.0575] or tighter any one value awrt 1 sf both values correct awrt 1sf, sign change and conclusion As a minimum, both values must be correct to 1 sf, candidate states "change of sign, hence root".	M1 dM1 A1 (3)
			[8]

Jun 10

edexcel

Ques [.] Num		Scheme	Mark	S
3.	(a)	f(1.2) = 0.49166551, f(1.3) = -0.048719817 Sign change (and as $f(x)$ is continuous) therefore a root α is such that $\alpha \in [1.2, 1.3]$	M1A1	
	(b)	$4\operatorname{cosec} x - 4x + 1 = 0 \implies 4x = 4\operatorname{cosec} x + 1$	M1	(2)
		$\Rightarrow x = \csc x + \frac{1}{4} \Rightarrow \underline{x = \frac{1}{\sin x} + \frac{1}{4}}$	A1 *	(2)
	(c)	$x_1 = \frac{1}{\sin(1.25)} + \frac{1}{4}$	M1	(=)
		$x_1 = 1.303757858, x_2 = 1.286745793$ $x_3 = 1.291744613$	A1 A1	
	(d)	f(1.2905) = 0.000445666695, f(1.2915) = -0.00475017278 Sign change (and as $f(x)$ is continuous) therefore a root α is such that	M1	(3)
		$\alpha \in (1.2905, 1.2915) \Rightarrow \alpha = 1.291 \text{ (3 dp)}$	A1	(2) [9]
		(a) M1: Attempts to evaluate both f(1.2) and f(1.3) and evaluates at least one of them correctly to awrt (or truncated) 1 sf. A1: both values correct to awrt (or truncated) 1 sf, sign change and conclusion. (b) M1: Attempt to make $4x$ or x the subject of the equation. A1: Candidate must then rearrange the equation to give the required result. It must be clear that candidate has made their initial $f(x) = 0$. (c) M1: An attempt to substitute $x_0 = 1.25$ into the iterative formula $Eg = \frac{1}{sin(1.25)} + \frac{1}{4}$. Can be implied by $x_1 = awrt 1.3$ or $x_1 = awrt 46^\circ$.		
		 A1: Both x₁ = awrt 1.3038 and x₂ = awrt 1.2867 A1: x₃ = awrt 1.2917 (d) M1: Choose suitable interval for x, e.g. [1.2905, 1.2915] or tighter and at least one attempt to evaluate f(x). A1: both values correct to awrt (or truncated) 1 sf, sign change and conclusion. 		