Jan 08

Jun 08

Question Number	Scheme	Marks
7.	(a) $\begin{align*} \mathrm{f}^{\prime}(x) & =3 \mathrm{e}^{x}+3 x \mathrm{e}^{x} \\ 3 \mathrm{e}^{x}+3 x \mathrm{e}^{x} & =3 \mathrm{e}^{x}(1+x)=0 \\ x & =-1 \\ \mathrm{f}(-1) & =-3 \mathrm{e}^{-1}-1 \tag{5} \end{align*}$	M1 A1 M1 A1 B1
	(b) $\begin{align*} & x_{1}=0.2596 \\ & x_{2}=0.2571 \\ & x_{3}=0.2578 \tag{3} \end{align*}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$
	(c) Choosing $(0.25755,0.25765)$ or an appropriate tighter interval. $\begin{aligned} & \mathrm{f}(0.25755)=-0.000379 \ldots \\ & \mathrm{f}(0.25765)=0.000109 \ldots \end{aligned}$ Change of sign (and continuity) \Rightarrow root $\in(0.25755,0.25765) * \quad$ cso ($\Rightarrow x=0.2576$, is correct to 4 decimal places) Note: $x=0.25762765 \ldots$ is accurate	M1 A1 A1 (3) [11]

June 2009
6665 Core Mathematics C3
Mark Scheme

$\begin{array}{\|l} \hline \text { Question } \\ \text { Number } \\ \hline \end{array}$	Scheme		Marks
Q2 ${ }^{(a)}$	$\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+2 x^{2}-3 x-11$		
(a)	$\begin{aligned} \mathrm{f}(x)=0 & \Rightarrow x^{3}+2 x^{2}-3 x-11=0 \\ & \Rightarrow x^{2}(x+2)-3 x-11=0 \\ & \Rightarrow x^{2}(x+2)=3 x+11 \\ & \Rightarrow \quad x^{2}=\frac{3 x+11}{x+2} \\ & \Rightarrow \quad x=\sqrt{\left(\frac{3 x+11}{x+2}\right)} \end{aligned}$	Sets $\mathrm{f}(\mathrm{x})=0$ (can be implied)	M1
		and takes out a factor	
		then rearranges to give the quoted result on the question paper.	A1 AG
(b)	Iterative formula: $x_{n+1}=\sqrt{\left(\frac{3 x_{n}+11}{x_{n}+2}\right)}, x_{1}=0$		
	$x_{2}=\sqrt{\left(\frac{3(0)+11}{(0)+2}\right)}$	An attempt to substitute $x_{1}=0$ into the iterative formula. Can be implied by $x_{2}=\sqrt{5.5}$ or 2.35 or awrt 2.345	M1
	$\begin{aligned} & x_{2}=2.34520788 \ldots \\ & x_{3}=2.037324945 \ldots \\ & x_{4}=2.058748112 \ldots \end{aligned}$	$\begin{aligned} \text { Both } x_{2} & =\text { awrt } 2.345 \\ \text { and } x_{3} & =\text { awrt } 2.037 \\ x_{4} & =\text { awrt } 2.059 \end{aligned}$	A1
			(3)
(c)	Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+2 x^{2}-3 x-11=0$		
	$\begin{aligned} & \mathrm{f}(2.0565)=-0.013781637 \ldots \\ & \mathrm{f}(2.0575)=0.0041401094 \ldots \end{aligned}$	Choose suitable interval for x, e.g. [2.0565, 2.0575] or tighter	M1
	Sign change (and $\mathrm{f}(x)$ is continuous) therefore a root α is such that $\alpha \in(2.0565,2.0575) \Rightarrow \alpha=2.057(3 \mathrm{dp})$	any one value awrt 1 sf both values correct awrt 1sf, sign change and conclusion	dM1
		$\%$	(3)
		As a minimum, both values must be correct to 1 sf, candidate states "change of sign, hence root".	
			[8]

