5.	A curve	is	described	by	the	equation
-----------	---------	----	-----------	----	-----	----------

$$x^3 - 4y^2 = 12xy.$$

(a) Find the coordinates of the two points on the curve where x = -8.

(3)

(b) Find the gradient of the curve at each of these points.

(6)

Leave	
blank	

4. A curve has equation $3x^2 - y^2 + xy = 4$. The points <i>P</i> and <i>Q</i> lie of the tangent to the curve is $\frac{8}{3}$ at <i>P</i> and at <i>Q</i> .	on the curve. The gradient
(a) Use implicit differentiation to show that $y - 2x = 0$ at P and	nd at Q. (6)
(b) Find the coordinates of P and Q .	(3)

A curve C has the equation $y^2 - 3y = x^3 + 8$.	
(a) Find $\frac{dy}{dx}$ in terms of x and y.	
dx	(4)
	()
(b) Hence find the gradient of C at the point where $y = 3$.	(3)
	(3)

Leave
hlank

4.	The curve C has the equation $ye^{-2x} = 2x + y^2$.	

(a) Find $\frac{dy}{dx}$ in terms of x and y.

(5)

The point P on C has coordinates (0, 1).

(b) Find the equation of the normal to C at P, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(4)

Leave

3. The curve C has the equation

$$\cos 2x + \cos 3y = 1$$
, $-\frac{\pi}{4} \leqslant x \leqslant \frac{\pi}{4}$, $0 \leqslant y \leqslant \frac{\pi}{6}$

(a) Find $\frac{dy}{dx}$ in terms of x and y.

(3)

The point *P* lies on *C* where $x = \frac{\pi}{6}$.

(b) Find the value of y at P.

(3)

(c) Find the equation of the tangent to C at P, giving your answer in the form $ax + by + c\pi = 0$, where a, b and c are integers.

(3)

Question 3 continued	blank

Leave	
blank	

A curve C has equation $2^x + y^2 = 2xy$	
Find the exact value of $\frac{dy}{dx}$ at the point on C with coordinates (3, 2).	
	(7)