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A, 4)

B (-5,-4)

Figure 1

Figure 1 shows a sketch of the curve with equation y =f(x).
The curve passes through the origin O and the points 4(5, 4) and B(-5, —4).

In separate diagrams, sketch the graph with equation

(@) y=|f(x),

3
(b) y=£f(x),

3
(c) y=2f(x+1).

“)

On each sketch, show the coordinates of the points corresponding to 4 and B.

8 (-5.4)’ A(S, a)

X

4= | £y

Leave )
blank

H 2 6 3 1 5 R B 0 8 2 4




January 2008

Leave )
blank
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8. The functions f and g are defined by

fix>1-2x°, xeR

g:xH§—4, x>0, xelR
X

(a) Find the inverse function f™.

(2)
(b) Show that the composite function gf is
8x’ -1
gf x> o0
“)
(c) Solve gf(x)=0.
(2)
(d) Use calculus to find the coordinates of the stationary point on the graph of y = gf(x).
5
3
a) Le€ = | —2«
J
. 3
Swop  varinbles x = | =24
5
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S &
Y = ol
3
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K) afC) = a(1-2+°)
/ ~J JJ
= Y - 4
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Question 8 continued 3
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Figure 1

Figure 1 shows the graph of y =f(x), xeR.

The graph consists of two line segments that meet at the point P.

The graph cuts the y-axis at the point O and the x-axis at the points (-3, 0) and R.
Sketch, on separate diagrams, the graphs of

(@) y=[f(x),
2)
(b) y=1f(=x).
2)
Given that f(x)=2—|x+1],
(c) find the coordinates of the points P, Q and R,
3)
1
(d) solve f(x)=—x.
2 3)

a) 4= | £c] NN S

E) 4 = £ (~x)
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Question 3 continued
c) £(x) = 2 ~|x+1]
/
At & 2 ~|aw+t] =0 D x= [ oer =23
R (1,8)
At & xz0 fCGY= 2-|o+1] =]
a(e,1)
At P |x+1] =0
oo = —| £C¢1) =2~ )~w+t] =2
P(-1,2)
d ) flx) = 7 2 -le+1]| = 4=
2 - gx = | >4+ )
X 41 = 2 -4 or ~x -1 =2 -4
._;3;( = | -3 = ;'-DL
(5 (4
X :’:‘;‘ ol x = -6
9
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4. The function fis defined by

(a) Show that f(x)=L, x>3.
x+1

“4)
(b) Find the range of f.
(2)
(¢) Find f~'(x). State the domain of this inverse function.
3)
The function g is defined by
g:x—2x" -3, xelR.
1
(d) Solve fg(x)=-—.
8 3
ZCx-O /
= 2( 2~ l) _ )

Coc )5 ~3) (x2-3)

2x~2 —(2+)

I

(z+1)(x-3)

= 250 -2 —5u ~ ]

(ot +)(x-3)

= (x ~3)

(o1 X2 -3)

1

|

x +|

s.,) Romge ok £ 0 < £69) <

L
4
Setlt notaktion K&—.SL of £ Cx)
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Question 4 continued
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’ 4 T@3,5)

51

2 1

S(7,2)
I ' >
0 3 7 X
Figure 1
Figure 1 shows the graph of y = f(x), 1<x<0O.
The points 7(3, 5) and S(7, 2) are turning points on the graph.
Sketch, on separate diagrams, the graphs of
(a) y=2f(x)-4,
(&)
(b) ¥ =[f(x)].
(&)
Indicate on each diagram the coordinates of any turning points on your sketch.
52'- 24 -4 b:lq"(x)l
1(3,6) T (3,5)
50,2
. S ( ?,0)
/ i 1
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5. The functions f and g are defined by

f:x—3x+Inx, x>0, xeR

2
g:ix—>e, xelR

(a) Write down the range of g.

(b) Show that the composite function fg is defined by

fo:xiox’+3e", xeR.
(c) Write down the range of fg.

. d 2
(d) Solve the equation —| f; =x(xe*+2).
&bm]m )

N\

Oy

2

Oy

()

ﬁ’) K&v\:\’(_ ot 3 ﬂ(&) kA ,
or  frixl,xeRy
, 2
5;) £ (%) = 3o + lux 3&) ="

fqn = £(e*)

-Fﬁ(:) = 3€xz + I Q.x‘

A4

2

t
= % + 2 |ne

x

= 3¢ +x
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Question 5 continued

0(7 al‘ .—cd((:u\ = é'x.&x A+ 2
’ A~
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Solve Gxe™ + 2o = x(xc +?—)

T

PN
L

Coe™ +2n = xe™ +2x

2 P 2
Z

éne" = X e

(6% -x*)e* =

2

e
DL(““DL)C, =0
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Figure 2

Figure 2 shows a sketch of part of the curve with equation y = f(x), x e R.
The curve meets the coordinate axes at the points 4(0,1-k) and B({1n £,0),

where £ is a constant and k£ >1, as shown in Figure 2.

On separate diagrams, sketch the curve with equation

(@) y=|f(), 5

(b) y=1"(x).
o))

Show on each sketch the coordinates, in terms of &, of each point at which the curve meets
or cuts the axes.

Given that f(x) =e* —k,

(c) state the range of f,

1)
(d) find f'(x),

3
(e) write down the domain of ',

1)
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Question 5 continued
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5. Sketch the graph of y =In |x| , stating the coordinates of any points of intersection with the

axes.
g @)

NP

-1\ 0 [ x
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Figure 1

Figure 1 shows a sketch of the graph of y = f(x).

The graph intersects the y-axis at the point (0, 1) and the point 4(2, 3) is the maximum
turning point.

Sketch, on separate axes, the graphs of

1 y="f=)+1,
(i) y=f(x +2) +3,
(iii) y = 2f(2x).

On each sketch, show the coordinates of the point at which your graph intersects the y-axis
and the coordinates of the point to which 4 is transformed.

'-) A‘("""")\/
/:% Y= €C-x) + 1

J

|~’.> W) '3: »é(xd—‘ﬂ *3

\

®
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i) (o2 /\" <) 4= L€l
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Question 6 continued
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9. (i) Find the exact solutions to the equations

(@) nBx-7)=5

(b) 3%e™2=15

(i) The functions f and g are defined by
xeR

f(x) =¢e™ + 3,
xeR, x>1

gx) =In(x - 1),

(a) Find f! and state its domain.

(b) Find fg and state its range.

Ih(3x -7) = ¢

(&)

(©))

(C))

(&)

1) &)

Vg -7 = e¥

B3¢ =

T2
-

3xe = 15

b)

L e o \
1 (3%e™*) = luis

TAHAHT

,h'g{d—lh& = lwas

[P Y

—

X |nd +1x +2 =

A(Ta4lnd) = lnif -2

x = lnig -2

7 +1-3
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Question 9 continued
I COL “3) = 24
F(~(C“) - /Li \hC‘JL—Z)
Aomain of (") X >3
5) ‘7*
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= e, + R
!:—.(9"-"}1
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4. The function f is defined by
f:x|—>|2x—5|, xeR

(a) Sketch the graph with equation y =f(x), showing the coordinates of the points where
the graph cuts or meets the axes.

(2)
(b) Solve f(x)=15+x.

3)
The function g is defined by

g:x>x —4x+1, xeR, 0<x<5

(c) Find fg(2).

2)
(d) Find the range of g.

3

&) (o r)\ \/

(f,z,o)

JD) | 2x -5 = IS ¢+

E«eu-r 29 ~S =15 4 or — 2% +S =15 +x
x = — 2
€+t

C) qc('x'\ = [Zx—-S'/ e]C.a.) = ¢ —4xX +(

Fatady = £ (X'=aoa)

= lzmq-—-'foc d—2.~$l

= ] 2T — 8% -3)
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Question 4 continued

£4(2) = | 2"~ &) -3 |

:j Z—%-Z}

~
—

— 1

= N

d) )
i(x) = x —dx 4\
= (=x- 2—324*'—4—
= (x-2)"-3
S =) 7~ 3
bot Ocxe§
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a () ::on"‘S = -3
J
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Figure 2

Figure 2 shows a sketch of the curve with the equation y =f(x), x € R.
The curve has a turning point at 4 (3, —4) and also passes through the point (0, 5).

(a) Write down the coordinates of the point to which A4 is transformed on the curve with

equation

() »=lf| A (3,4)
(i) y = 26( 1), Ale,- g)

(b) Sketch the curve with equation

y=1(x|)

(C))

On your sketch show the coordinates of all turning points and the coordinates of the

point at which the curve cuts the y-axis.

The curve with equation y = f(x)is a translation of the curve with equation y =x’.

(¢) Find f(x).

(d) Explain why the function f does not have an inverse.

(&)

2

0y
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