4.

Figure 1 shows a sketch of the curve with equation y = f(x). The curve passes through the origin O and the points A(5, 4) and B(-5, -4).

In separate diagrams, sketch the graph with equation

(a)
$$y = |f(x)|$$
, (3)

(b)
$$y = f(|x|)$$
, (3)

(c)
$$y = 2f(x+1)$$
. (4)

On each sketch, show the coordinates of the points corresponding to A and B.

a)

Question 4 continued

Identical to part (a)

$$y = f(x)$$

4

8. The functions f and g are defined by

$$f: x \mapsto 1 - 2x^3, x \in \mathbb{R}$$

 $g: x \mapsto \frac{3}{x} - 4, x > 0, x \in \mathbb{R}$

(a) Find the inverse function f⁻¹.

(2)

(b) Show that the composite function gf is

$$gf: x \mapsto \frac{8x^3 - 1}{1 - 2x^3}.$$

(4)

(c) Solve gf(x) = 0.

(2)

(d) Use calculus to find the coordinates of the stationary point on the graph of y = gf(x).

(5)

a) Let $y = 1 - 2x^3$

swap variables
$$x = 1 - 2y^3$$

$$2y^3 = 1 - \infty$$

$$\frac{3}{3} = \frac{1-x}{2}$$

$$y = \sqrt[3]{\frac{1-x}{2}}$$

$$f'(x) = \sqrt{\frac{1-x}{z}}$$

 $gf(x) = g(1-2x^3)$

$$=\frac{3}{(1-2x^3)}-4$$

Question 8 continued

$$gf(x) = 3 - 4(1 - 2x^3)$$

$$\frac{3-4+8x^{3}}{(1-2x^{3})}$$

$$= \frac{(1-5x^3)}{8x^3-1}$$

c)
$$gf(x) = 0 \Rightarrow 8x^3 - 1 = 0$$
 $\frac{(1-2x^3)}{(1-2x^3)}$

$$\Rightarrow$$
 $8x^3-l=0$

$$\Rightarrow$$
 $x^3 = \frac{1}{8}$

$$\Rightarrow$$
 $\chi = 1$

d)
$$y = 8x^3 - 1$$
 $dy = \frac{(1-2x^3)(24x^2) - (8x^3 - 1)(-6x^2)}{(1-2x^3)^2}$

$$\Rightarrow y = \frac{0-1}{1-1} = -1$$

(Total 13 marks)

Q8

TOTAL FOR PAPER: 75 MARKS

END

H 2 6 3 1 5 R B 0 2 4 2 4

3.

Figure 1

Figure 1 shows the graph of $y = f(x), x \in \mathbb{R}$.

The graph consists of two line segments that meet at the point *P*.

The graph cuts the y-axis at the point Q and the x-axis at the points (-3, 0) and R. Sketch, on separate diagrams, the graphs of

(a)
$$y = |f(x)|$$
, (2)

(b)
$$y = f(-x)$$
. (2)

Given that f(x) = 2 - |x+1|,

(c) find the coordinates of the points P, Q and R,

(3)

(d) solve
$$f(x) = \frac{1}{2}x$$
.

(5)

a)
$$y = |f(x)|$$

$$\frac{1}{3} R$$

$$y = f(-x)$$

Question 3 continued

$$f(x) = 2 - |x+1|$$

At R
$$2 - |x + 1| = 0$$
 $\Rightarrow x = 1 \text{ or } -3$

At Q
$$2c = 0$$
 $f(x) = 2 - |0+1| = 1$

$$2c = -1$$
 $f(-1) = 2 - |-1+1| = 2$

$$d = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} \times \frac{1}{2}$$

$$2 - \frac{1}{2}x = |x+1|$$

$$x+1=2-\frac{1}{2}x$$
 or $-x-1=2-\frac{1}{2}x$

$$\frac{3}{2}x = 1 \qquad -3 = \frac{1}{2}x$$

$$x = \frac{2}{3}$$
 or $x = -6$

4. The function f is defined by

$$f: x \mapsto \frac{2(x-1)}{x^2 - 2x - 3} - \frac{1}{x - 3}, \quad x > 3.$$

(a) Show that $f(x) = \frac{1}{x+1}$, x > 3.

(4)

(b) Find the range of f.

(2)

(c) Find $f^{-1}(x)$. State the domain of this inverse function.

(3)

The function g is defined by

$$g: x \mapsto 2x^2 - 3, \quad x \in \mathbb{R}.$$

(d) Solve $fg(x) = \frac{1}{8}$.

(3)

a) $f(x) = \frac{2(x-1)}{x^2-2x-3} - \frac{1}{x-3}$

$$= \frac{2(x-1)}{(x+1)(x-3)} - \frac{1}{(x-3)}$$

$$\frac{2x-2-x-1}{(x+1)(x-3)}$$

$$= \frac{(x-3)}{(x+1)(x-3)}$$

b) Range of f 0 < f(x) < \f

Set notation Range of $f(x) = (0, \frac{1}{4})$

Question 4 continued

c) Let
$$y = \frac{1}{x+1}$$

Swap variables
$$x = \frac{1}{y+1}$$

$$9+1=\frac{1}{2}$$

$$f^{-1}(x) = \frac{1-x}{2}$$

$$0 < \chi < \frac{1}{4}$$

d)
$$f(x) = \frac{1}{x+1}$$
 $g(x) = 2x^2-3$

$$f_g(x) = f(2x^2-3) = \frac{1}{2x^2-3+1}$$

$$= \frac{1}{2x^2-2}$$

Solve
$$fg(x) = \frac{1}{8}$$

$$\frac{1}{8} = \frac{1}{2x^2-2}$$

$$2x^{2} - 2 = 8$$

$$2x^{2} = 10$$

$$x^{2} = 5$$

$$x = \pm \sqrt{5}$$

3.

Figure 1

Figure 1 shows the graph of y = f(x), 1 < x < 9. The points T(3, 5) and S(7, 2) are turning points on the graph.

Sketch, on separate diagrams, the graphs of

(a)
$$y = 2f(x) - 4$$
,

(3)

(b)
$$y = |f(x)|$$
.

(3)

Indicate on each diagram the coordinates of any turning points on your sketch.

$$y = 2 + (2) - 4$$

5. The functions f and g are defined by

$$f: x \mapsto 3x + \ln x, \quad x > 0, \quad x \in \mathbb{R}$$

 $g: x \mapsto e^{x^2}, \quad x \in \mathbb{R}$

(a) Write down the range of g.

(1)

(b) Show that the composite function fg is defined by

fg:
$$x \mapsto x^2 + 3e^{x^2}$$
, $x \in \mathbb{R}$.

(2)

(c) Write down the range of fg.

(1)

(d) Solve the equation $\frac{d}{dx} [fg(x)] = x(xe^{x^2} + 2)$.

(6)

a) Range of g g(x) >1

b) $f(x) = 3x + \ln x$ $g(x) = e^{x^2}$

$$fg(x) = f(e^{x^2})$$

c) Range fg(x) > 3

Question 5 continued

$$\frac{d}{dx} = 6xe^{x^2} + 2x$$

Solve
$$6xe^{x^2} + 2x = x(xe^{x^2} + 2)$$

$$6xe^{x^2} + 2x = xe^{x^2} + 2x$$

$$6xe^{x^2} = x^2e^{x^2}$$

$$(6x-x^2)e^{x^2}=0$$

(1)

Leave blank

5.

Figure 2

Figure 2 shows a sketch of part of the curve with equation y = f(x), $x \in \mathbb{R}$. The curve meets the coordinate axes at the points A(0,1-k) and $B(\frac{1}{2}\ln k,0)$, where k is a constant and k > 1, as shown in Figure 2.

On separate diagrams, sketch the curve with equation

(a)
$$y = |f(x)|,$$
 (3)

(b)
$$y = f^{-1}(x)$$
. (2)

Show on each sketch the coordinates, in terms of k, of each point at which the curve meets or cuts the axes.

Given that $f(x) = e^{2x} - k$,

(c) state the range of f,

(d) find $f^{-1}(x)$, (3)

(e) write down the domain of f^{-1} . (1)

Question 5 continued

reflection of y=f(2) in line y=x

Runge f(x) > -k or $(-k, \infty)$ $5 = e^{2x} - k$ (e) Domain of f'(x)Swap $x = e^{2y} - k$

d)
$$5 = e^{-k}$$

Swap $x = e^{2y} - k$
 $x + k = e^{2y}$
 $h(x+k) = 2y$
 $y = \frac{1}{2} \ln(x+k)$
 $f^{-1}(x) = \frac{1}{2} \ln(x+k)$

or (-k, ∞)

(3)

5. Sketch the graph of $y = \ln |x|$, stating the coordinates of any points of intersection with the axes.

6.

Figure 1

Figure 1 shows a sketch of the graph of y = f(x).

The graph intersects the y-axis at the point (0, 1) and the point A(2, 3) is the maximum turning point.

Sketch, on separate axes, the graphs of

- (i) y = f(-x) + 1,
- (ii) y = f(x + 2) + 3,
- (iii) y = 2f(2x).

On each sketch, show the coordinates of the point at which your graph intersects the y-axis and the coordinates of the point to which A is transformed.

(9)

i)

ii

$$y = f(x+2) + 3$$

nii)

	Leave blank	
Question 6 continued		

- **9.** (i) Find the exact solutions to the equations
 - (a) ln(3x-7) = 5

(3)

(b)
$$3^x e^{7x+2} = 15$$

(5)

(ii) The functions f and g are defined by

$$f(x) = e^{2x} + 3, \qquad x \in \mathbb{R}$$

$$x \in \mathbb{R}$$

$$g(x) = \ln(x - 1), \qquad x \in \mathbb{R}, \ x > 1$$

$$x \in \mathbb{R}, x > 1$$

(a) Find f^{-1} and state its domain.

(4)

(b) Find fg and state its range.

(3)

i) a) In (3x -7)

$$\frac{3x-7}{3x} = e^5 + 7$$

$$x \ln 3 + 7x + 2 = \ln 15$$

$$x = \frac{\ln |S| - 2}{\ln |S|}$$

$$Swep \quad x = e^{2s} + 3$$

Question 9 continued

$$f(x) = e^{2x} + 3$$
 $g(x) = \ln(x-1)$

$$f_g(x) = f(\ln(x-1))$$

Q9

(Total 15 marks)

TOTAL FOR PAPER: 75 MARKS

END

The function f is defined by

$$f: x \mapsto |2x-5|, x \in \mathbb{R}$$

(a) Sketch the graph with equation y = f(x), showing the coordinates of the points where the graph cuts or meets the axes.

(2)

(b) Solve f(x) = 15 + x.

(3)

The function g is defined by

$$g: x \mapsto x^2 - 4x + 1, \quad x \in \mathbb{R}, \quad 0 \leqslant x \leqslant 5$$

(c) Find fg(2).

(2)

(d) Find the range of g.

(3)

a)

7)

Extre
$$2x - 5 = 15 + 3$$

$$x = -\frac{10}{3}$$

c)
$$f(x) = |2x-5|$$
 $g(x) = x^2 - 4x + 1$
 $fg(x) = f(x^2 - 4x + 1)$
 $= |2x^2 - 8x + 2 - 5|$
 $= |2x^2 - 8x - 3|$

Question 4 continued $f_{3}(z) = |z(z)^{2} - 8(z) - 3|$ = |8 - 16 - 3| = |-11|

d)
$$g(x) = x^{2} - 4x + 1$$

$$= (x - z)^{2} + 1 - 4$$

$$= (x - z)^{2} - 3$$

$$\therefore$$
 $g(\alpha) \geq -3$

but
$$0 \le x \le 5$$

$$g(s) = (s-2)^2 - 3 = 6$$

$$g(s) = 0 - 3 = -3$$
Range $-3 \le g(x) \le 6$

6.

Figure 2

Figure 2 shows a sketch of the curve with the equation y = f(x), $x \in \mathbb{R}$. The curve has a turning point at A(3, -4) and also passes through the point (0, 5).

(a) Write down the coordinates of the point to which A is transformed on the curve with equation

(i)
$$y = |f(x)|$$
,

(i)
$$y = |f(x)|$$
, $A'(3,4)$
(ii) $y = 2f(\frac{1}{2}x)$. $A'(6,-8)$

(b) Sketch the curve with equation

$$y = f(|x|)$$

On your sketch show the coordinates of all turning points and the coordinates of the point at which the curve cuts the y-axis.

(3)

The curve with equation y = f(x) is a translation of the curve with equation $y = x^2$.

(c) Find f(x).

(2)

(d) Explain why the function f does not have an inverse.

(1)

Leave blank **Question 6 continued** Must