4.

Figure 1

Figure 1 shows a sketch of the curve with equation y = f(x). The curve passes through the origin O and the points A(5, 4) and B(-5, -4).

In separate diagrams, sketch the graph with equation

(a)
$$y = |\mathbf{f}(x)|$$
, (3)

(b)
$$y = f(|x|)$$
, (3)

(c)
$$y = 2f(x+1)$$
. (4)

On each sketch, show the coordinates of the points corresponding to A and B.

	Leave blank
Question 4 continued	

Leave	
blank	

8. The functions f and g are defined by

$$f: x \mapsto 1 - 2x^3, \ x \in \mathbb{R}$$

$$g: x \mapsto \frac{3}{x} - 4, \ x > 0, \ x \in \mathbb{R}$$

(a) Find the inverse function f^{-1} .

(2)

(b) Show that the composite function gf is

$$gf: x \mapsto \frac{8x^3 - 1}{1 - 2x^3}.$$

(4)

(c) Solve gf(x) = 0.

(2)

(d) Use calculus to find the coordinates of the stationary point on the graph of y = gf(x).

(5)

Question 8 continued	
	Ç
	_
(Total 13 marks)	
TOTAL FOR PAPER: 75 MARKS END	

3.

Figure 1

Figure 1 shows the graph of y = f(x), $x \in \mathbb{R}$.

The graph consists of two line segments that meet at the point P.

The graph cuts the y-axis at the point Q and the x-axis at the points (-3, 0) and R. Sketch, on separate diagrams, the graphs of

(a)
$$y = |f(x)|$$
,

(2)

(b)
$$y = f(-x)$$
.

(2)

Given that f(x) = 2 - |x+1|,

(c) find the coordinates of the points P, Q and R,

(3)

(d) solve
$$f(x) = \frac{1}{2}x$$
.

(5)

Question 3 continued	blank

The function f is defined by

$$f: x \mapsto \frac{2(x-1)}{x^2 - 2x - 3} - \frac{1}{x-3}, \quad x > 3.$$

(a) Show that $f(x) = \frac{1}{x+1}$, x > 3.

(4)

(b) Find the range of f.

(2)

(c) Find $f^{-1}(x)$. State the domain of this inverse function.

(3)

The function g is defined by

$$g: x \mapsto 2x^2 - 3, \quad x \in \mathbb{R}.$$

(d) Solve $fg(x) = \frac{1}{8}$.

(3)

Question 4 continued	blank

3.

Figure 1

Figure 1 shows the graph of y = f(x), 1 < x < 9. The points T(3, 5) and S(7, 2) are turning points on the graph.

Sketch, on separate diagrams, the graphs of

(a)
$$y = 2f(x) - 4$$
, (3)

(b)
$$y = |f(x)|$$
. (3)

Indicate on each diagram the coordinates of any turning points on your sketch.

5. The functions f and g are defined by

$$f: x \mapsto 3x + \ln x, \quad x > 0, \quad x \in \mathbb{R}$$

 $g: x \mapsto e^{x^2}, \quad x \in \mathbb{R}$

(a) Write down the range of g.

(1)

(b) Show that the composite function fg is defined by

fg:
$$x \mapsto x^2 + 3e^{x^2}$$
, $x \in \mathbb{R}$.

(2)

(c) Write down the range of fg.

(1)

(d) Solve the equation $\frac{d}{dx} [fg(x)] = x(xe^{x^2} + 2)$.

(6)

Question 5 continued	blank

(1)

Leave blank

5.

Figure 2

Figure 2 shows a sketch of part of the curve with equation y = f(x), $x \in \mathbb{R}$. The curve meets the coordinate axes at the points A(0,1-k) and $B(\frac{1}{2}\ln k,0)$, where k is a constant and k > 1, as shown in Figure 2.

On separate diagrams, sketch the curve with equation

(a)
$$y = |f(x)|$$
, (3)

(b)
$$y = f^{-1}(x)$$
. (2)

Show on each sketch the coordinates, in terms of k, of each point at which the curve meets or cuts the axes.

Given that $f(x) = e^{2x} - k$,

(c) state the range of f,

(d) find $f^{-1}(x)$, (3)

(e) write down the domain of f^{-1} . (1)

Question 5 continued	Leave blank
Question 5 continued	

		Leave blank
5.	Sketch the graph of $y = \ln x $, stating the coordinates of any points of intersection with the axes.	
	(3)	

6.

Figure 1

Figure 1 shows a sketch of the graph of y = f(x).

The graph intersects the y-axis at the point (0, 1) and the point A(2, 3) is the maximum turning point.

Sketch, on separate axes, the graphs of

- (i) y = f(-x) + 1,
- (ii) y = f(x + 2) + 3,
- (iii) y = 2f(2x).

On each sketch, show the coordinates of the point at which your graph intersects the *y*-axis and the coordinates of the point to which *A* is transformed.

(9)

	Leave blank
Question 6 continued	Junk

- **9.** (i) Find the exact solutions to the equations
 - (a) ln(3x-7) = 5

(3)

(b) $3^x e^{7x+2} = 15$

(5)

(ii) The functions f and g are defined by

$$f(x) = e^{2x} + 3,$$

$$x \in \mathbb{R}$$

$$g(x) = \ln(x - 1), \qquad x \in \mathbb{R}, \ x > 1$$

(a) Find f^{-1} and state its domain.

(4)

(b) Find fg and state its range.

(3)

_			_				
_			_				
_	_	_		_	_	_	_

	Leave blank
Question 9 continued	
	Q9
(Total 15 marks)	
TOTAL FOR PAPER: 75 MARKS	
END	

The function f is defined by

$$f: x \mapsto |2x-5|, x \in \mathbb{R}$$

(a) Sketch the graph with equation y = f(x), showing the coordinates of the points where the graph cuts or meets the axes.

(2)

(b) Solve f(x) = 15 + x.

(3)

The function g is defined by

$$g: x \mapsto x^2 - 4x + 1, \quad x \in \mathbb{R}, \quad 0 \leqslant x \leqslant 5$$

(c) Find fg(2).

(2)

(d) Find the range of g.

(3)

Question 4 continued	blank
	1

6.

Figure 2

Figure 2 shows a sketch of the curve with the equation y = f(x), $x \in \mathbb{R}$. The curve has a turning point at A(3, -4) and also passes through the point (0, 5).

- (a) Write down the coordinates of the point to which A is transformed on the curve with equation
 - (i) y = |f(x)|,

(ii)
$$y = 2f(\frac{1}{2}x)$$
. (4)

(b) Sketch the curve with equation

$$y = f(|x|)$$

On your sketch show the coordinates of all turning points and the coordinates of the point at which the curve cuts the *y*-axis.

(3)

The curve with equation y = f(x) is a translation of the curve with equation $y = x^2$.

(c) Find f(x).

(2)

(d) Explain why the function f does not have an inverse.

(1)

Question 6 continued	Leave blank

