Question Number	Scheme	Marks
4.	$(a) \qquad \qquad (-5,4) \qquad \qquad (5,4)$ $\bullet \qquad \qquad$	
	Shape $(5,4)$ $(-5,4)$ (b) For the purpose of marking this paper, the graph is identical to (a) Shape $(5,4)$ $(-5,4)$	B1 B1 B1 (3) B1 B1 B1 (3)
	(-6, -8) $(4, 8)$ x	
	$General\ shape-unchanged \\ Translation\ to\ left \\ \left(4,8\right) \\ \left(-6,-8\right) \\ In\ all\ parts\ of\ this\ question\ ignore\ any\ drawing\ outside\ the\ domains\ shown\ in\ the\ diagrams\ above.$	B1 B1 B1 B1 (4) [10]

Question Number	Scheme	Marks
8.	(a) $x = 1 - 2y^3 \implies y = \left(\frac{1 - x}{2}\right)^{\frac{1}{3}} \text{ or } \sqrt[3]{\frac{1 - x}{2}}$	M1 A1 (2)
	$f^{-1}: x \mapsto \left(\frac{1-x}{2}\right)^{1/3}$ Ignore domain	
	(b) $gf(x) = \frac{3}{1 - 2x^3} - 4$ = $\frac{3 - 4(1 - 2x^3)}{1 - 2x^3}$	M1 A1
	$=\frac{8x^3-1}{1-2x^3} $ * cso	A1 (4)
	$gf: x \mapsto \frac{8x^3 - 1}{1 - 2x^3}$ Ignore domain	
	(c) $8x^3 - 1 = 0$ Attempting solution of numerator = 0	M1
	$x = \frac{1}{2}$ Correct answer and no additional answers	A1 (2)
	(d) $\frac{dy}{dx} = \frac{(1 - 2x^3) \times 24x^2 + (8x^3 - 1) \times 6x^2}{(1 - 2x^3)^2}$	M1 A1
	$=\frac{18x^2}{\left(1-2x^3\right)^2}$	A1
	Solving their numerator = 0 and substituting to find y .	M1
	x = 0, y = -1	A1 (5) [13]

Question Number	Scheme	Marks	S
3.		B1 B1	(2)
	Vertex and intersections	B1 B1	(2)
	Q:(0,1)	B1 B1 B1	(3)
	Leading to $x = \frac{2}{3}$ $x < -1$; $2 + x + 1 = \frac{1}{2}x$	M1 A1 A1 M1 A1	(5) [12]

Question Number	Scheme	Marks
4.	(a) $x^{2}-2x-3 = (x-3)(x+1)$ $f(x) = \frac{2(x-1)-(x+1)}{(x-3)(x+1)} \left(or \frac{2(x-1)}{(x-3)(x+1)} - \frac{x+1}{(x-3)(x+1)}\right)$	B1 M1 A1
	$= \frac{x-3}{(x-3)(x+1)} = \frac{1}{x+1} *$ cso	A1 (4)
	(b) $\left(0, \frac{1}{4}\right)$ Accept $0 < y < \frac{1}{4}$, $0 < f(x) < \frac{1}{4}$ etc.	B1 B1 (2)
	(c) Let $y = f(x)$ $y = \frac{1}{x+1}$ $x = \frac{1}{y+1}$ $yx + x = 1$	
	$y = \frac{1-x}{x}$ or $\frac{1}{x} - 1$ $f^{-1}(x) = \frac{1-x}{x}$	M1 A1
	Domain of f^{-1} is $\left(0, \frac{1}{4}\right)$ ft their part (b)	B1 ft (3)
	(d) $fg(x) = \frac{1}{2x^2 - 3 + 1}$	
	$\frac{1}{2x^2 - 2} = \frac{1}{8}$ $x^2 = 5$ $x = \pm \sqrt{5}$ both	M1 A1 A1 (3) [12]

Jan 09

Question Number	Scheme	Marks	
3.	(a) $y = (3,6)$ Shape $(3,6)$ $(7,0)$	B1 B1 B1 (3)	
	(b) $y \uparrow \qquad \qquad \qquad Shape \qquad \qquad (3,5) \qquad \qquad (7,2) \qquad \qquad (7,2)$	B1 B1 B1 (3) [6]	

Question Number	Scheme	Marks
5.	(a) $g(x) \ge 1$	B1 (1)
		M1 A1 (2)
	$= x + 3e$ $\left(fg : x \mapsto x^2 + 3e^{x^2} \right)$	A1 (2)
	(c) $fg(x) \ge 3$	B1 (1)
	dx	M1 A1
	$2x + 6x e^{x^{2}} = x^{2} e^{x^{2}} + 2x$ $e^{x^{2}} (6x - x^{2}) = 0$	M1
	· · · · ·	A1 A1 (6) [10]

Marks	Scheme	Question Number
Curve retains shape when $x > \frac{1}{2} \ln k$ B1	<i>y</i>	Q5 (a)
ets through the x-axis when $x < \frac{1}{2} \ln k$ B1	Curve ref. $(0, k-1)$	
d $(\frac{1}{2} \ln k, 0)$ marked the correct positions.		
of curve. The curve nould be contained in quadrants 1, 2 and 3 (Ignore asymptote)	Correct shap	(b)
$(k,0)$ and $(0,\frac{1}{2}\ln k)$	O X (1	
)>-k	Either f	
$\overline{(-k, \infty)}$ or $\overline{f > -k}$ or Range $> -k$.	Range of f: $\underline{f(x) > -k}$ or $\underline{y > -k}$ or $\underline{(-k, \infty)}$	(c)
Attempt to make x vapped y) the subject M1	$y = e^{x} - k \Rightarrow y + k = e^{x}$ $\Rightarrow \ln(y + k) = 2x$ (or	(d)
s e ^{2x} the subject and takes ln of both sides	$\Rightarrow \frac{1}{2}\ln(y+k) = x$ Mai	
$\frac{(x+k)}{(x+k)}$ or $\frac{\ln\sqrt{(x+k)}}{(x+k)}$ A1 cao (3)	Hence $f^{-1}(x) = \frac{1}{2}\ln(x+k)$ $\frac{1}{2}\ln(x+k)$	
$\frac{c > -k}{-k}$ or $\frac{(-k, \infty)}{-k}$ or $\frac{-k}{-k}$ or $\frac{(-k, \infty)}{-k}$ or $\frac{(-k, \infty)}{-k}$ or $\frac{-k}{-k}$	$f^{-1}(x)$: Domain: $x > -k$ or $(-k, \infty)$	(e)
[10]		

Jan 10

Question Number	Scheme	
Q5	$y = \ln x $	
	Right-hand branch in quadrants 4 and 1. Correct shape.	B1
	Left-hand branch in quadrants 2 and 3. Correct shape.	B1
	Completely correct sketch and both $\left(-1,\{0\}\right)$ and $\left(1,\{0\}\right)$	B1
		(3)
		[3]

Jan 10

Ques		Scheme	Mar	ks
Q6	(i)	y = f(-x) + 1 Shape of		
		and must have a maximum in quadrant 2 and a minimum in quadrant 1 or on the positive y -axis.	B1	
		Either $(\{0\}, 2)$ Either $(\{0\}, 2)$ or $A'(-2, 4)$	B1	
		Both $(\{0\}, 2)$ and $A'(-2, 4)$	B1	
		x		(3)
	(ii)	y = f(x+2) + 3		
		$A'(\{0\}, 6)$ Any translation of the original curve.	B1	
		The <i>translated maximum</i> has either x-coordinate of 0 (can be implied) or y-coordinate of 6.	B1	
		The translated curve has maximum $(\{0\}, 6)$ and is in the correct position on the	B1	
		Cartesian axes.		
				(3)
	(iii)	y = 2f(2x) $y = A'(1, 6)$ Shape of		
		with a minimum in quadrant 2 and a maximum in quadrant 1.	B1	
		Either $(\{0\}, 2)$ or $A'(1, 6)$	B1	
		Both $({0, 2})$ and $A'({1, 6})$	B1	
		O X		(3)
		1		[9]

Jan 10

Factorising out at least two x terms on one side and collecting number terms on the other side. $x = \frac{-2 + \ln 15}{7 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{1 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{1 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{1 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{1 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{1 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{1 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{1 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{1 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{1 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{1 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{1 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{1 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{1 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{1 + \ln 3} \left\{ = 0.0874 \right\}$ $x = -2 + \ln $	Question Number		Scheme	Marks
Takes e of both sides of the equation. This can be implied by $3x - 7 = e^5$. M1 $3x - 7 = e^5 \implies x = \frac{e^5 + 7}{3} \left\{ = 51.804 \right\}$ Then rearranges to make x the subject. MA1 $x = \frac{e^5 + 7}{3} = 15$ Takes ln (or logs) of both sides of the equation. M1 $x = \frac{e^5 + 7}{3} = 15$ $x = \frac{e^5 + 7}{3} = 15$ Takes ln (or logs) of both sides of the equation. M1 $x = \frac{e^5 + 7}{3} = 15$ Applies the addition law of logarithms. M1 $x = \frac{e^5 + 7}{3} = 15$ Applies the addition law of logarithms. M2 $x = \frac{e^5 + 7}{3} = 15$ Applies the addition law of logarithms. M3 $x = \frac{e^5 + 7}{3} = 15$ Applies the addition law of logarithms. M3 $x = \frac{e^5 + 7}{3} = 15$ Applies the addition law of logarithms. M3 $x = \frac{e^5 + 7}{3} = 15$ Factorising out at least two x terms on one side and collecting number terms on the other side. M3 $x = \frac{e^5 + 7}{3} = 15$ Attempt to make x (or swapped y) the subject Makes $e^5 = 10$ the subject and takes ln of both sides of the equation. M1 $x = \frac{e^5 + 7}{3} = 15$ Attempt to make $x = 10$ (or swapped $y = 10$) the subject Makes $e^5 = 10$ the subject and takes ln of both sides of the equation. M1 $x = \frac{e^5 + 7}{3} = 15$ Attempt to make $x = 10$ (or swapped $y = 10$) the subject Makes $e^5 = 10$ the subject and takes ln of both sides of the equation. M1 $x = \frac{e^5 + 7}{3} = 15$ Attempt to make $x = 10$ (or swapped $y = 10$) the subject Makes $e^5 = 10$ the subject and takes ln of both sides of the equation. M1 $x = \frac{e^5 + 7}{3} = 10$ Attempt to make $x = 10$ (or swapped $y = 10$) the subject Makes $e^5 = 10$ the subject and takes ln of both sides of the equation. M1 $x = \frac{e^5 + 7}{3} = 10$ Attempt to put function $y = 10$ (or $y = 10$) the subject M1 (or swapped $y = 10$) the subject M2 (or swapped $y = 10$) the subject M3 (or swapped $y = 10$) the subject M3 (or swapped $y = 10$) the subject M3 (or swapped $y = 10$) the subject M3 (or swapped $y = 10$) the subject M3 (or swapped $y = 10$) the subj	00 (1) ()			
$3x - 7 = e^{5} \Rightarrow x = \frac{e^{5} + 7}{3} = 51.804$ (b) $3^{5}e^{7x + 2} = 15$ $\ln(3^{7}e^{7x + 2}) = \ln 15$ $\ln(3^{7$	Q9 (I)(a)		-	M1
$\ln\left(3^{x}e^{7x+2}\right) = \ln 15$ $\ln 3^{x} + \ln e^{7x+2} = \ln 15$ $x \ln 3 + 7x + 2 = \ln 15$ $x(\ln 3 + 7) = -2 + \ln 15$ $x = \frac{-2 + \ln 15}{7 + \ln 3} = 0.0874$ Applies the addition law of logarithms. And the standard collecting number terms on one side and collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on one side and collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the standard collecting number terms on the other side. And the		$3x - 7 = e^5 \implies x = \frac{e^5 + 7}{3} \{ = 51.804 \}$		
$\ln 3^{x} + \ln e^{7x+2} = \ln 15$ $x \ln 3 + 7x + 2 = \ln 15$ $x(\ln 3 + 7x + 2)$	(b)	$3^x e^{7x+2} = 15$		
$x \ln 3 + 7x + 2 = \ln 15$ $x \ln 3 + 7x + 2 = \ln 15$ $x(\ln 3 + 7) = -2 + \ln 15$ $x = \frac{-2 + \ln 15}{7 + \ln 3} \left\{ = 0.0874 \right\}$ Factorising out at least two x terms on one side and collecting number terms on the other side. $x = \frac{-2 + \ln 15}{7 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{7 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{7 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{7 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{7 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{7 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{7 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{7 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{7 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{7 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{7 + \ln 3} \left\{ = 0.0874 \right\}$ Attempt to make x (or swapped y) the subject Makes e^{2x} the subject and takes in of both sides $x = \frac{1}{2} \ln(x - 3) \text{ or } \ln \sqrt{(x - 3)} \text{ or } \frac{1}{2} \ln(x - 3) \text{ or } \frac{1}{2} \ln(x - 3) \text{ or } \frac{1}{2} \ln(x - 3) \text{ (see appendix)}$ $x = \frac{1}{2} \ln(x - 3) \text{ or } \frac{1}{2} \ln(x - 3) \text{ (see appendix)}$ $x = \frac{1}{2} \ln(x - 3) \text{ or } \frac{1}{2} \ln(x - 3) \text{ (see appendix)}$ $x = \frac{1}{2} \ln(x - 3) \text{ or } \frac{1}{2} \ln(x - 3) \text{ (see appendix)}$ $x = \frac{1}{2} \ln(x - 3) \text{ or } \frac{1}{2} \ln(x - 3) \text{ (see appendix)}$ $x = \frac{1}{2} $		$\ln\left(3^x e^{7x+2}\right) = \ln 15$	Takes ln (or logs) of both sides of the equation.	M1
Factorising out at least two x terms on one side and collecting number terms on the other side. $x = \frac{-2 + \ln 15}{7 + \ln 3} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{10.081} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{10.081} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{10.081} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{10.081} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{10.081} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{10.081} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{10.081} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{10.081} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{10.081} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{10.081} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{10.081} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{10.081} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{10.081} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{10.081} \left\{ = 0.0874 \right\}$ $x = \frac{-2 + \ln 15}{10.081} \left\{$		$\ln 3^x + \ln e^{7x+2} = \ln 15$	Applies the addition law of logarithms.	M1
and collecting number terms on the other side. $x = \frac{-2 + \ln 15}{7 + \ln 3} \left\{ = 0.0874 \right\}$ $Exact answer \text{ of } \frac{-2 + \ln 15}{7 + \ln 3}$ Altempt to make x $\Rightarrow \ln(y-3) = 2x$ $\Rightarrow \frac{1}{2}\ln(y-3) = x$ Attempt to make x (or swapped y) the subject Makes e^{2x} the subject and takes $\ln o$ both sides Hence $f^{-1}(x) = \frac{1}{2}\ln(x-3)$ or $\frac{1}{2}\ln(x-3)$ or $\ln \sqrt{(x-3)}$ $f^{-1}(x) : \text{ Domain: } \frac{x > 3}{2} \text{ or } \frac{(3, \infty)}{2}$ or $\frac{f^{-1}(y) = \frac{1}{2}\ln(y-3)}{2}$ (see appendix) $Either \frac{x > 3}{2} \text{ or } \frac{(3, \infty)}{2} \text{ or } \frac{Domain > 3}{2}.$ (b) $g(x) = \ln(x-1), x \in \square$, $x > 1$ $fg(x) = e^{2\ln(x-1)} + 3 \{ = (x-1)^2 + 3 \}$ An attempt to put function g into function f .		$x\ln 3 + 7x + 2 = \ln 15$	$x\ln 3 + 7x + 2 = \ln 15$	A1 oe
(ii) (a) $f(x) = e^{2x} + 3, x \in \square$ $y = e^{2x} + 3 \Rightarrow y - 3 = e^{2x}$ $\Rightarrow \ln(y - 3) = 2x$ $\Rightarrow \frac{1}{2}\ln(y - 3) = x$ Hence $f^{-1}(x) = \frac{1}{2}\ln(x - 3)$ $f^{-1}(x)$: Domain: $x > 3$ or $(3, \infty)$ $g(x) = \ln(x - 1), x \in \square, x > 1$ An attempt to make x (or swapped y) the subject Makes e^{2x} the subject and takes $n = 2x$ the subject n		$x(\ln 3 + 7) = -2 + \ln 15$		ddM1
$y = e^{2x} + 3 \Rightarrow y - 3 = e^{2x}$ $\Rightarrow \ln(y - 3) = 2x$ $\Rightarrow \frac{1}{2}\ln(y - 3) = x$ M1 M2 M3 M2 M3 M3 M3 M4 M2 M3 M2 M3 M3 M3 M4 M5 M2 M2 M2 M3 M3 M3 M4 M5 M6 M6 M6 M6 M6 M7 M1 M2 M3 M2 M3 M3 M3 M3 M4 M5 M6 M6 M6 M7 M6 M7 M8 M8 M8 M8 M9 M1 M1 M2 M3 M3 M3 M4 M5 M6 M6 M6 M6 M6 M7 M8 M8 M8 M9 M1 M1 M2 M3 M3 M3 M4 M5 M6 M6 M6 M6 M6 M6 M7 M8 M8 M8 M8 M9 M1 M1 M2 M3 M3 M4 M5 M6 M6 M6 M6 M6 M8 M8 M8 M8 M9 M1 M1 M1 M2 M3 M3 M3 M4 M5 M5 M6 M6 M6 M6 M6 M7 M8 M8 M8 M9 M1 M1		$x = \frac{-2 + \ln 15}{7 + \ln 3} \ \left\{ = 0.0874 \right\}$	Exact answer of $\frac{-2 + \ln 15}{7 + \ln 3}$	A1 oe (5)
$\Rightarrow \ln(y-3) = 2x$ $\Rightarrow \frac{1}{2}\ln(y-3) = x$ Hence $f^{-1}(x) = \frac{1}{2}\ln(x-3)$ $f^{-1}(x)$: Domain: $\frac{x > 3}{2}$ or $\frac{3}{2}$ or $\frac{3}{2}$ (b) $g(x) = \ln(x-1), x \in \square$, $x > 1$ $\Rightarrow \ln(y-3) = 2x$ $\frac{1}{2}\ln(y-3) = x$ Makes e^{2x} the subject and takes ln of both sides $\frac{\frac{1}{2}\ln(x-3) \text{ or } \ln\sqrt{(x-3)}}{1 + \frac{1}{2}\ln(y-3)}$ or $\frac{f^{-1}(y) = \frac{1}{2}\ln(y-3)}{1 + \frac{1}{2}\ln(y-3)}$ (see appendix) Either $\frac{x > 3}{2}$ or $\frac{3}{2}$	(ii) (a)	$f(x) = e^{2x} + 3, x \in \square$		(3)
$\Rightarrow \frac{1}{2}\ln(y-3) = x$ $\Rightarrow \frac{1}{2}\ln(y-3) = x$ Hence $f^{-1}(x) = \frac{1}{2}\ln(x-3)$ $f^{-1}(x) : Domain: \underline{x > 3} \text{ or } \underline{(3, \infty)}$ $g(x) = \ln(x-1), x \in \square, x > 1$ $\text{An attempt to put function g into function f.}$ $\Rightarrow \frac{1}{2}\ln(y-3) = x$ $\text{In } \frac{1}{2}\ln(x-3) \text{ or } \frac{\ln\sqrt{(x-3)}}{\sqrt{x-3}}$ $\text{Or } \frac{f^{-1}(y) = \frac{1}{2}\ln(y-3) \text{ (see appendix)}}{\text{Either } \underline{x > 3} \text{ or } \underline{(3, \infty)} \text{ or } \underline{\text{Domain} > 3}.}$ B1 $\text{An attempt to put function g into function f.}$			-	M1
There is $f(x) = \frac{1}{2}\ln(x-3)$ or $f(x) = \frac{1}{2}\ln(y-3)$ (see appendix) $f(x) = \frac{1}{2}\ln(x-3)$ (see appendix) Either $f(x) = \frac{1}{2}\ln(y-3)$ or $f($				M1
(b) $g(x) = \ln(x-1), x \in \square, x > 1$ $fg(x) = e^{2\ln(x-1)} + 3 \{= (x-1)^2 + 3\}$ An attempt to put function g into function f.		Hence $f^{-1}(x) = \frac{1}{2} \ln(x-3)$		<u>A1</u> cao
$fg(x) = e^{2\ln(x-1)} + 3 \{= (x-1)^2 + 3\}$ An attempt to put function g into function f.		$f^{-1}(x)$: Domain: $\underline{x > 3}$ or $\underline{(3, \infty)}$	Either $\underline{x > 3}$ or $\underline{(3, \infty)}$ or $\underline{\text{Domain} > 3}$.	B1 (4)
$ fg(x) = e^{2\pi i (x-1)^2} + 3 = (x-1)^2 + 3 $	(b)	$g(x) = \ln(x-1), x \in \square, x > 1$		
$e^{2\pi i x^{2} t^{2}} + 3 \text{ or } (x-1)^{2} + 3 \text{ or } x^{2} - 2x + 4.$ A1 i		$fg(x) = e^{2\ln(x-1)} + 3 \left\{ = (x-1)^2 + 3 \right\}$	An attempt to put function g into function f. $e^{2\ln(x-1)} + 3$ or $(x-1)^2 + 3$ or $x^2 - 2x + 4$.	M1 A1 isw
fg(x): Range: $\underline{y > 3}$ or $\underline{(3, \infty)}$ Either $\underline{y > 3}$ or $\underline{(3, \infty)}$ or $\underline{\text{Range} > 3}$ or $\underline{\text{fg}(x) > 3}$.		fg(x): Range: $y > 3$ or $(3, \infty)$	Either $y > 3$ or $(3, \infty)$ or Range > 3 or $fg(x) > 3$.	B1 (3)
				[15]

Questio Numbe		Scheme	Marks	
6. (a)	(i) (ii)	(3,4) $(6,-8)$	B1 B1 B1 B1	(4)
	(b)	y 5 5 (-3, -4) (3, -4)	B1 B1 B1	(4)
	(c)	$f(x) = (x-3)^2 - 4$ or $f(x) = x^2 - 6x + 5$	M1A1	(3)
	(d)	Either: The function f is a many-one {mapping}. Or: The function f is not a one-one {mapping}.	B1	
				(1) [10]
		(b) B1: Correct shape for $x \ge 0$, with the curve meeting the positive <i>y</i> -axis and the turning point is found below the <i>x</i> -axis. (providing candidate does not copy the whole of the original curve and adds nothing else to their sketch.). B1: Curve is symmetrical about the <i>y</i> -axis or correct shape of curve for $x < 0$. Note: The first two B1B1 can only be awarded if the curve has the correct shape, with a cusp on the positive <i>y</i> -axis and with both turning points located in the correct quadrants. Otherwise award B1B0. B1: Correct turning points of $(-3, -4)$ and $(3, -4)$. Also, $(\{0\}, 5)$ is marked where the graph cuts through the <i>y</i> -axis. Allow $(5, 0)$ rather than $(0, 5)$ if marked in the "correct" place on the <i>y</i> -axis. (c) M1: Either states $f(x)$ in the form $(x \pm \alpha)^2 \pm \beta$; $\alpha, \beta \neq 0$ Or uses a complete method on $f(x) = x^2 + ax + b$, with $f(0) = 5$ and $f(3) = -4$ to find both <i>a</i> and <i>b</i> . A1: Either $(x - 3)^2 - 4$ or $(x)^2 - 6x + 5$ (d) B1: Or: The inverse is a one-many {mapping and not a function}. Or: Because $f(0) = 5$ and also $f(6) = 5$. Or: One <i>y</i> -coordinate has 2 corresponding <i>x</i> -coordinates {and therefore cannot have an inverse}.		