Leave blank **6.** [In this question, the unit vectors **i** and **j** are in a vertical plane, **i** being horizontal and **j** being vertically upwards.] Figure 3 At time t = 0, a particle P is projected from the point A which has position vector $10\mathbf{j}$ metres with respect to a fixed origin O at ground level. The ground is horizontal. The velocity of projection of P is $(3\mathbf{i} + 5\mathbf{j})$ m s⁻¹, as shown in Figure 3. The particle moves freely under gravity and reaches the ground after T seconds. (a) For $0 \le t \le T$, show that, with respect to O, the position vector, \mathbf{r} metres, of P at time t seconds is given by $$\mathbf{r} = 3t\mathbf{i} + (10 + 5t - 4.9t^2)\mathbf{j}$$ (3) (b) Find the value of T. **(3)** (c) Find the velocity of *P* at time *t* seconds $(0 \le t \le T)$. **(2)** When P is at the point B, the direction of motion of P is 45° below the horizontal. (d) Find the time taken for *P* to move from *A* to *B*. **(2)** (e) Find the speed of P as it passes through B. **(2)** | | Leave | |----------------------|-------| | Question 6 continued | blank | Leave blank - 8. A particle is projected from a point O with speed u at an angle of elevation α above the horizontal and moves freely under gravity. When the particle has moved a horizontal distance x, its height above O is y. - (a) Show that $$y = x \tan \alpha - \frac{gx^2}{2u^2 \cos^2 \alpha}$$ (4) A girl throws a ball from a point A at the top of a cliff. The point A is 8 m above a horizontal beach. The ball is projected with speed 7 m s^{-1} at an angle of elevation of 45° . By modelling the ball as a particle moving freely under gravity, (b) find the horizontal distance of the ball from A when the ball is 1 m above the beach. (5) A boy is standing on the beach at the point B vertically below A. He starts to run in a straight line with speed v m s⁻¹, leaving B 0.4 seconds after the ball is thrown. He catches the ball when it is 1 m above the beach. | (c) |) Find the value of <i>v</i> . | (4 | |-----|--------------------------------|----| nestion 8 continued | | |---------------------|--| Leave blank **7.** [In this question, the unit vectors \mathbf{i} and \mathbf{j} are horizontal and vertical respectively.] Figure 3 The point O is a fixed point on a horizontal plane. A ball is projected from O with velocity $(6\mathbf{i} + 12\mathbf{j})$ m s⁻¹, and passes through the point A at time t seconds after projection. The point B is on the horizontal plane vertically below A, as shown in Figure 3. It is given that OB = 2AB. Find (a) the value of t, **(7)** (b) the speed, $V \text{ m s}^{-1}$, of the ball at the instant when it passes through A. **(5)** At another point C on the path the speed of the ball is also V m s⁻¹. (c) Find the time taken for the ball to travel from O to C. **(3)** | |
 | |--|------|
 | | Question 7 continued | |----------------------| **7.** Figure 4 A small stone is projected from a point O at the top of a vertical cliff OA. The point O is 52.5 m above the sea. The stone rises to a maximum height of 10 m above the level of O before hitting the sea at the point B, where AB = 50 m, as shown in Figure 4. The stone is modelled as a particle moving freely under gravity. (a) Show that the vertical component of the velocity of projection of the stone is $14~\text{m s}^{-1}$. (3) (b) Find the speed of projection. **(9)** (c) Find the time after projection when the stone is moving parallel to OB. (5) | estion 7 continued | | | |--------------------|--|--| Leave blank **6.** Figure 2 A ball is thrown from a point O, which is 6 m above horizontal ground. The ball is projected with speed u m s⁻¹ at an angle θ above the horizontal. There is a thin vertical post which is 4 m high and 8 m horizontally away from the vertical through O, as shown in Figure 2. The ball passes just above the top of the post 2 s after projection. The ball is modelled as a particle. (a) Show that $\tan \theta = 2.2$ **(5)** (b) Find the value of *u*. **(2)** The ball hits the ground *T* seconds after projection. (c) Find the value of T. **(3)** Immediately before the ball hits the ground the direction of motion of the ball makes an angle α with the horizontal. (d) Find α . **(5)** | Question 6 continued | blank | |----------------------|-------| **6.** Figure 4 A ball is projected from a point A which is 8 m above horizontal ground as shown in Figure 4. The ball is projected with speed u m s⁻¹ at an angle θ ° above the horizontal. The ball moves freely under gravity and hits the ground at the point B. The speed of the ball immediately before it hits the ground is 2u m s⁻¹. (a) By considering energy, find the value of u. **(5)** The time taken for the ball to move from A to B is 2 seconds. Find (b) the value of θ , **(4)** (c) the minimum speed of the ball on its path from A to B. **(2)** The first part of this question is outside the new syllabus and requires the relationship: gain in kinetic energy = loss in gravitational potential energy | 0.5mv^2 - | 0.5 mu 2 = | mgh | |-----------|-----------------|-----| |-----------|-----------------|-----|