6. (a)	Using $s = ut + -at^2$ Method must be	M1	
	clear $\mathbf{r} = (3t)\mathbf{i} + (10 + 5t - 4.9t^2)\mathbf{j}$ Answer given	A1 A1	(3)
(b)	j component = 0: $10 + 5t - 4.9t^2$ quadratic formula: $t = \frac{5 \pm \sqrt{25 + 196}}{9.8} = \frac{5 \pm \sqrt{221}}{9.8}$ T = 2.03(s), 2.0(s) positive solution only.	M1 DM1 A1	(3)
(c)	Differentiating the position vector (or working from first principles) $\mathbf{v} = 3\mathbf{i} + (5 - 9.8t)\mathbf{j} \text{ (ms}^{-1})$	M1 A1	(2)
(d)	At <i>B</i> the j component of the velocity is the negative of the i component: 5 -9.8t = -3, $8 = 9.8t$, t = 0.82	M1 A1	(2)
(e)			(2) 1 2]

Question		advancing learning, changing l
Number	Scheme	Marks
8. (a)	u,	
	Horiz: $x = u \cos \alpha t$	B1
	Vert: $y = u \sin \alpha t - \frac{1}{2}gt^2$	M1
	$y = u \sin \alpha \times \frac{x}{u \cos \alpha} - \frac{1}{2}g \times \frac{x^2}{u^2 \cos^2 \alpha}$	DM1
	$y = x \tan \alpha - \frac{gx^2}{2u^2 \cos^2 \alpha} **$	A1 (4)
(b)	$y = -7: -7 = \tan 45x - \frac{gx^2}{2 \times 7^2 \cos^2 45}$	M1 A1
	$-7 = x - \frac{9.8x^2}{7^2}$ -7 = x - $\frac{x^2}{5}$ x ² - 5x - 35 = 0	M1
	$x^{2}-5x-35 = 0$ $x = \frac{5 \pm \sqrt{25 + 4 \times 35}}{2}$ x = 8.92 or 8.9	M1 A1
(c)	Time to travel 8.922 m horizontally $=\frac{8.922}{7\cos 45}$ = 1.802s	(5)
	$v = \frac{8.922}{1.402}$	M1 A1 ft
	$= 6.36 \text{ or } 6.4 \text{ (m s}^{-1}\text{)}$	A1
		(4) 13

Question Number	Scheme	Marks	
7 (a)	$\mathbf{i} \rightarrow \text{distance} = 6t$	B1	
	$\mathbf{j} \uparrow \text{ distance} = 12t - \frac{1}{2}gt^2$	M1 A1	
	At <i>B</i> , $2\left(12t - \frac{1}{2}gt^2\right) = 6t$	M1 A1	
	$(24-6)t = gt^2$	DM1	
	$18 = gt, \ t = \frac{18}{g} (= 1.84s)$	A1	
(b)	$\mathbf{i} \rightarrow \text{speed} = 6$ $\mathbf{j} \uparrow \text{ velocity} = 12 - gt = -6$	B1 M1 A1	(7)
	: speed at A = $\sqrt{6^2 + 6^2} = \sqrt{72} = 6\sqrt{2} (= 8.49) (ms^{-1})$	M1 A1	(5)
(c)	\uparrow speed = $12 - gt = +6$	M1 A1 ft	(5)
	$t = \frac{6}{g} (= 0.61s)$	A1	
	8		(3) 15
	l		

Question Number	Scheme	Marks	
	0^2 2^2 $2 = 0.8 = 10$	M1	Complete method using <i>suvat</i> to form an equation in u_v .
7 (a)	$0^2 = u_V^2 - 2 \ge 9.8 \ge 10$	A1	Correct equation e.g. $0 = u^2 - 20g$
	$u_V = 14 *$	A1	*Answer given* requires equation and working, including 196, seen.
		(3)	
OR	conservation of energy:	M1	Initial $KE = gain in GPE + final KE$
	$\frac{1}{2}m(u_h^2 + u_v^2) = mg \times 10 + \frac{1}{2}mu_h^2, \frac{1}{2}u_v^2 = 98$	A1	Correct equation
	$u_V = 14 *$	A1	*Answer given*
	v	(3)	
(b)		M1	Use the vertical distance travelled to find the total time taken.
	$(\uparrow), -52.5 = 14t - \frac{1}{2}gt^2$	A1	At most one error
		A1	Correct equation
	$49t^2 - 140t - 525 = 0$	DM1	Solve for <i>t</i> . Dependent on the preceding M mark
	$(t-5)(49t+105) = 0 \qquad t = 5$	A1	only
	$(\rightarrow), 50 = 5u_H$	M1	Use their time of flight to form an equation in u_H
	$u_{H} = 10$	A1	only
	$u = \sqrt{10^2 + 14^2}$	M1	Use of Pythagoras with two non-zero components, or solution of a pair of simultaneous equations in u and α .
	$=\sqrt{296}$; 17.2 m s ⁻¹	A1	17.2 or 17 (method involves use of $g = 9.8$ so an exact surd answer is not acceptable)
		(9)	
			See next page for an alternative route to <i>u</i> , and (c).

OR	$50 = u \cos \alpha t$ or $50 = u_H t$	M1	First 3 marks for the quadratic as above. Used in their quadratic
	$49\left(\frac{50}{u_{H}}\right)^{2} - 140\left(\frac{50}{u_{H}}\right) - 525 = 0$ $525(u_{H})^{2} + 140(u_{H}) - 122500 = 0$	A1	Correct quadratic in u_H
	Solve for u_H	DM1	Dependent on the M mark for setting up the initial quadratic equation in t.
	$u_{H} = 10$	A1	only
	etc.		Complete as above.
(c)	$\tan OBA = \frac{52.5}{50} = 1.05$	B1	Correct direction o.e. (accept reciprocal)
	$v_v = 1.05 \ge 10 = 10.5$	M1	Use trig. with their u_H and correct interpretation of direction to find the vertical component of speed. Working with distances is M0. (condone $10 \div 1.05$)
	$(\uparrow), -10.5 = 14 - gt$	DM1	Use suvat to form an equation in t. Dependent on the preceding M.
		A1	Correct equation for their u_{H} . For incorrect direction give A0 here.
	t = 2.5	A1	only
		(5)	
		17	

Q.	Scheme	Marks		
6 (a)	$2 = -2u\sin\theta + \frac{1}{2}g \times 4$	M1	Vertical distance. Condone sign errors. Must have used $t = 2$, but could be using $u_y = u \sin \theta$	
	$ \begin{pmatrix} -2 = u \sin \theta t - \frac{1}{2}gt^2 \\ u \sin \theta = g - 1 \end{pmatrix} $	A1	All correct	
	$2u\cos\theta = 8 (u\cos\theta = 4)$ $(u\cos\theta t = 8)$	B1	Horizontal distance. Accept $u_x = 4$ o.e.	
	$\tan\theta = \frac{g-1}{4} = 2.2 *$	M1	Divide to obtain expression for $\tan \theta$	
		A1	Given answer It is acceptable to quote and use the equation for the projectile path. Incorrect equation is 0/5.	
(b)	$u\cos\theta = 4$	M1	Use the horizontal distance and θ to find <i>u</i> 9.67 or 9.7	
	$u = \frac{4}{\cos \theta} = 9.66 = 9.7$	A1	NB θ = 65.6° leading to 9.68 is an accuracy penalty.	
	OR use components from (a) and Pythagoras.			
(c)	$6 = (1 - g)T + \frac{1}{2} \times 9.8T^2$	M1	Equation for vertical distance $= \pm 6$ to give a quadratic in <i>T</i> . Allow their u_y	
	$4.9T^{2} - 8.8T - 6 = 0$ $T = \frac{8.8 \pm \sqrt{\left[(-)8.8\right]^{2} + 24 \times 4.9}}{9.8}$	DM1	Solve a 3 term quadratic	
	T = 2.323 = 2.32 or 2.3	A1	2.3 or 2.32 only	
(d)	$v^2 = 8.8^2 + 2g \times 6$ or $v = -8.8 + gT$	M1 A1	Use <i>suvat</i> to find vertical speed Correct equation their u_y , <i>T</i>	
	v = 13.96 Horiz speed = 4			
	$\tan \alpha = \frac{v}{4}$	DM1	Correct trig. with their vertical speed to find the required angle.	
	$\alpha = 74.01 = 74^{\circ}$	A1 A1	Correct equation 74 ^w or 74.0 ^w . Allow 106.	
	Alternative:			
	$\frac{1}{2}m(9.6664)^2 + 6mg = \frac{1}{2}mv^2$	M 1	Conservation of energy to find speed	
	v = 14.52719	A1 DM1	Correct method for α	
	$\cos\alpha = \frac{4}{14.5}$	DM1 A1		
	$\alpha = 74.01 = 74^{\circ}$	A1	Allow 106	

Question Number	Scheme	Marks	Notes
6a	Conservation of energy:	M1	Energy equation must contain the correct terms, but condone sign error.
	$\frac{1}{2}mu^2 + mg \times 8 = \frac{1}{2}m 2u^2$ $mu^2 + 16mg = 4mu^2$	A2 -1ee	Correct unsimplified
	$16mg = 3mu^2, u = \sqrt{\frac{16g}{3}}$	DM1	Solve for <i>u</i>
	<i>u</i> = 7.2	A1 [5]	Accept 7.23. Accept $\sqrt{\frac{16g}{3}}$
6b	Vertical distance: $-8 = u \sin \theta \times 2 - \frac{g}{2} \times 4$	M1	Condone sign errors or trig error. <i>u</i> must be resolved.
		A2 -1ee	Correct equation for their <i>u</i> .
	$\sin\theta = \frac{2g-8}{2u} = 0.802$		
	$\theta = 53.3^{\circ}$	A1 [4]	or 53°
6c	Min speed at max height, i.e. $u\cos\theta$	M1	Condone consistent trig confusion with part (b)
	$= 4.3 \text{ (m s}^{-1})$	A1 [2]	or 4.32 (ms ⁻¹)