Edex Probability 2008-10

June 2008 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marl	٢S
2 (a)	$E = \text{take regular exercise} \qquad B = \text{always eat breakfast}$ $P(E \cap B) = P(E \mid B) \times P(B)$ $= \frac{9}{25} \times \frac{2}{3} = 0.24 \text{ or } \frac{6}{25} \text{ or } \frac{18}{75}$	M1 A1	(2)
(b)	$P(E \cup B) = \frac{2}{3} + \frac{2}{5} - \frac{6}{25} \text{or} P(E' \mid B') \text{or} P(B' \cap E) \text{or} P(B \cap E')$ $= \frac{62}{75} \qquad = \frac{13}{25} \qquad = \frac{12}{75} \qquad = \frac{32}{75}$	M1 A1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1	(4)
(c)	$P(E B) = 0.36 \neq 0.40 = P(E)$ or $P(E \cap B) = \frac{6}{25} \neq \frac{2}{5} \times \frac{2}{3} = P(E) \times P(B)$	M1 A1	(2)
	So <i>E</i> and <i>B</i> are <u>not</u> statistically independent		[8]
(a)	M1 for $\frac{9}{25} \times \frac{2}{3}$ or P(<i>E</i> <i>B</i>)×P(<i>B</i>) and at least one correct value seen. A1 for 0.24 or example NB $\frac{2}{5} \times \frac{2}{3}$ alone or $\frac{2}{5} \times \frac{9}{25}$ alone scores M0A0. Correct answer scores full marks.	ct equiv.	
(b)	1 st M1 for use of the addition rule. Must have 3 terms and some values, can ft their (a) Or a full method for $P(E' B')$ requires 1 - $P(E B')$ and equation for $P(E B')$: (a)	$+\frac{x}{3} = \frac{2}{5}$	
(c)	$\frac{OI}{OI}$ a full method for $P(B' \cap E)$ or $P(B \cap E')$ [or other valid method] $2^{nd} M1 \text{for a method leading to answer e.g. } 1 - P(E \cup B)$ $\frac{OI}{OI} P(B') \times P(E' \mid B') \text{ or } P(B') - P(B' \cap E) \text{ or } P(E') - P(B \cap E')$ $\frac{Venn \text{ Diagram } 1^{st} \text{ M1 for diagram with attempt at } \frac{2}{5} - P(B \cap E) \text{ or } \frac{2}{3} - P(B \cap E) \text{ . Can ft their (a)}}{1^{st} \text{ A1 } \text{ for a correct first probability as listed or } 32, 18 \text{ and } 12 \text{ on Venn Diagram}}$ $2^{nd} M1 \text{for identifying suitable values to test for independence e.g. } P(E) = 0.40 \text{ and } P(E B) = 0.36$ $\frac{OI}{OI} P(E) \times P(B) = \dots \text{ and } P(E \cap B) = \text{their (a) [but their (a) } \neq \frac{2}{5} \times \frac{2}{3}]. \text{ Values seen somewhere}$ A1 for correct values and a correct comment		
	<u>Diagrams</u> You may see these or find these useful for identifying probabilities.		
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}$ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array}	bres M1A scores M $=\frac{1}{3} \times \frac{3}{5}$.0 1A0

edexcel

Question Number	Scheme	Mar	ks
Q2 (a)	$\frac{\frac{1}{5}}{\frac{1}{2}}$ $\frac{\frac{1}{5}}{\frac{1}{5}}$ $\frac{1}{5}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{\frac{4}{5}}{\frac{2}{5}}$ $\frac{2}{5}$ $\frac{1}{5}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{3}{5}$ $\frac{1}{10}$ $\frac{3}{5}$ $\frac{1}{10}$ $\frac{3}{5}$ $\frac{1}{10}$ $\frac{3}{5}$ $\frac{1}{10}$ $\frac{9}{10}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{9}{10}$ $\frac{1}{5}$ $$	B1 B1 B1	
(b)(i)	$\frac{1}{3} \times \frac{1}{10} = \frac{1}{30}$ or equivalent	M1 A1	(3)
(ii)	CNL + BNL + FNL = $\frac{1}{2} \times \frac{4}{5} + \frac{1}{6} \times \frac{3}{5} + \frac{1}{3} \times \frac{9}{10}$	M1	(2)
	$=\frac{4}{5}$ or equivalent	A1	(2)
(c)	$P(F'/L) = \frac{P(F' \cap L)}{P(L)}$ Attempt correct conditional probability but see notes	M1	(-)
	$= \frac{\frac{1}{6} \times \frac{2}{5} + \frac{1}{2} \times \frac{1}{5}}{1 - (ii)} \frac{\text{numerator}}{\text{denominator}}$	$\frac{A1}{A1ft}$	
	$= \frac{\frac{5}{30}}{\frac{1}{5}} = \frac{5}{6} \qquad \text{or equivalent} \qquad \text{cao}$	A1	(4) [11]
Notes	 Exact decimal equivalents required throughout if fractions not used e.g. 2(b)(i) 0.03 Correct path through their tree given in their probabilities award Ms 2(a) All branches required for first B1. Labels can be words rather than symbols for second B1. Probabilities from question enough for third B1 i.e. bracketed probabilities not required. Probabilities and labels swapped i.e. labels on branches and probabilities at end can be awarded the marks if correct. 2(b)(i) Correct answer only award both marks. 2(b)(ii) At least one correct path identified and attempt at adding all three multiplied pairs award M1 2(c) Require probability on numerator and division by probability for M1.Require numerator correct for their tree for M1. Correct formula seen and used, accept denominator as attempt and award M1 No formula, denominator must be correct for their tree or 1-(ii) for M1 1/30 on numerator only is M0, P(L/F') is M0. 		

edexcel

Question Number	Scheme	Marks
Q7(a) (i)	$\mathbf{P}(A \cup B) = a + b $ cao	B1
(ii)	$P(A \cup B) = a + b - ab$ or equivalent	B1 (2)
(b)	$P(R \cup Q) = 0.15 + 0.35 = 0.5 $ 0.5	B1
(c)	$P(R \cap Q) = P(R Q) \times P(Q)$ = 0.1 × 0.35	(1) M1
	= 0.035 0.035	A1
		(2)
(d)	$P(R \cup Q) = P(R) + P(Q) - P(R \cap Q) OR P(R) = P(R \cap Q') + P(R \cap Q)$ $= 0.15 + their (c)$	M1
	$\begin{array}{l} 0.5 = P(R) + 0.35 - 0.035 \\ P(R) = 0.185 \end{array} = \begin{array}{l} 0.15 + 0.035 \\ = 0.15 + 0.035 \\ = 0.185 \end{array} = 0.185 \end{array}$	A1 (2) [7]
Notes	 7(a) (i) Accept a + b - 0 for B1 Special Case If answers to (i) and (ii) are (i) P(A)+P(B) and (ii) P(A)+P(B)-P(A)P(B) award B0B1 7(a)(i) and (ii) answers must be clearly labelled or in correct order for marks to be awarded. 	

January 2010 6683 Statistics S1 Mark Scheme

Questic Numbe	on er	Scheme	Marks
Q1 ((a)	$\frac{\frac{1}{3}}{\frac{1}{3}}$ Red $\frac{\frac{1}{3}}{\frac{1}{3}}$ Blue $\frac{\frac{1}{3}}{\frac{1}{3}}$ Green $\frac{\frac{1}{4}}{\frac{1}{4}}$ Blue $\frac{\frac{2}{3}}{\frac{1}{3}}$ Red $\frac{\frac{1}{3}}{\frac{1}{3}}$ Green $\frac{\frac{2}{3}}{\frac{1}{3}}$ Red $\frac{\frac{2}{3}}{\frac{1}{3}}$ Blue $\frac{\frac{2}{3}}{\frac{1}{3}}$ Blue	M1 A1 A1 (3)
((b)	P(Blue bead and a green bead) = $\left(\frac{1}{4} \times \frac{1}{3}\right) + \left(\frac{1}{4} \times \frac{1}{3}\right) = \frac{1}{6}$ (or any exact equivalent)	M1 A1 (2)
Q1 ((a) [b)	M1for shape and labels: 3 branches followed by 3,2,2 with some R, B and G seen Allow 3 branches followed by 3, 3, 3 if 0 probabilities are seen implying that 3, Allow blank branches if the other probabilities imply probability on blanks is zer Ignore further sets of branches1 st A1for correct probabilities and correct labels on 1 st set of branches. 2 nd A1 for correct probabilities and correct labels on 2 nd set of branches. (accept 0.33, 0.67 etc or better here)M1for identifying the 2 cases BG and GB and adding 2 products of probabilities. These cases may be identified by their probabilities e.g. $(\frac{1}{4} \times \frac{1}{3}) + (\frac{1}{4} \times \frac{1}{3})$ NB $\frac{1}{6}$ (or exact equivalent) with no working scores 2/2	2, 2 intended ro
Speci Ca	ial se	With Replacement (This oversimplifies so do not apply Mis-Read: max mark 2/5)(a) B1 for 3 branches followed by 3, 3, 3 with correct labels and probabilities of $\frac{1}{2}, \frac{1}{4}, \frac{1}{4}$ (b) M1 for identifying 2, possibly correct cases and adding 2 products of probabilities I wrong answer $\left[\left(\frac{1}{4} \times \frac{1}{4}\right) + \left(\frac{1}{4} \times \frac{1}{4}\right)\right]$ will be sufficient for M1A0 here but $\frac{1}{4} \times \frac{1}{2} + \dots$ would score	on each. Out A0 for re M0

Ques Num	stion ber	Scheme	Marks	
	(-)			
4	(a)	<i>S D</i> 3 closed curves and 4 in centre Evidence of subtraction	M1 M1	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1 A1 B1	
	(b)	P(None of the 3 options) = $\frac{16}{180} = \frac{4}{45}$	(5) B1ft (1)	
	(c)	P(Networking only)= $\frac{17}{180}$	B1ft	
	(d)	P(All 3 options/technician) = $\frac{4}{40} = \frac{1}{10}$	M1 A1 (2) Total [9]	
4	(a)	a) 2 nd M1 There may be evidence of subtraction in "outer" portions, so with 4 in the centre then 35, 28 (instead of 31,36,24) along with 33, 9, 3 can score this mark but A0A0 N.B. This is a common error and their "16" becomes 28 but still scores B0 in part (a)		
	(b)	B1ft for $\frac{16}{180}$ or any exact equivalent. Can ft their "16" from their box. If there is no value for their "16" in the box only allow this mark if they have <u>shown</u> some working.		
	(c)	B1ft ft their "17". Accept any exact equivalent		
	(d)	If a probability greater than 1 is found in part (d) score M0A0 $P(a = b = b)$		
		M1 for clear sight of $\frac{P(S \cap D \cap N)}{P(S \cap N)}$ and an attempt at one of the probabilities, ft th	eir values.	
		Allow P(all 3 $S \cap N$) = $\frac{4}{36}$ or $\frac{1}{9}$ to score M1 A0.		
		Allow a correct ft from their diagram to score M1A0 e.g. in 33,3,9 case in (a): $\frac{4}{44}$ or $\frac{1}{11}$ is M1A0		
		A ratio of probabilities with a <u>product</u> of probabilities on top is Mo, even with a correct formula. $\Delta 1 \qquad \text{for } \frac{4}{2} \text{ or } \frac{1}{2} \text{ or an exact equivalent}$		
		Allow $\frac{4}{40}$ or $\frac{1}{10}$ to score both marks if this follows from their diagram, otherw explanation (method) is required.	ise some	

Question Number	Scheme	Marks
Q2 (a)	P(R) and $P(B)$	B1
	$\frac{1}{2}$ H 2^{nd} set of probabilities	B1
	$\frac{1}{2}$ T	(2)
(b)	$P(H) = \frac{5}{2} \times \frac{2}{7} + \frac{7}{2} \times \frac{1}{7} = \frac{41}{7}$ or awrt 0.569	M1 A1
(0)	12 3 12 2 72	(2)
(c)	$P(R H) = \frac{\frac{5}{12} \times \frac{2}{3}}{\frac{41}{72}}, = \frac{20}{41} \text{ or awrt } 0.488$	M1 A1ft A1
	12	(3)
(d)	$\left(\frac{5}{12}\right)^2 + \left(\frac{7}{12}\right)^2$	M1 A1ft
	$=\frac{25}{144}+\frac{49}{144}=\frac{74}{144}$ or $\frac{37}{72}$ or awrt 0.514	A1 (3)
		Total 10
(a)	1^{st} B1 for the probabilities on the first 2 branches. Accept 0.416 and 0.583	
	2^{nd} B1 for probabilities on the second set of branches. Accept 0.410 and 0.383	
	Allow exact decimal equivalents using clear recurring notation if required.	
(b)	M1 for an expression for $P(H)$ that follows through their sum of two products of probabilitie tree diagram	es from their
(c)	5	
Formula seen	M1 for $\frac{P(R \cap H)}{P(H)}$ with denominator their (b) substituted e.g. $\frac{P(R \cap H)}{P(H)} = \frac{\overline{12}}{(\text{their (b)})}$ away	rd M1.
Formula not seen	M1 for $\frac{\text{probability} \times \text{probability}}{\text{their } b}$ but M0 if fraction repeated e.g. $\frac{\frac{5}{12} \times \frac{2}{3}}{\frac{2}{2}}$.	
	1^{st} A1ft for a fully correct expression or correct follow through 2^{nd} A1 for $\frac{20}{41}$ o.e.	
(d)	M1 for $\left(\frac{5}{12}\right)^2$ or $\left(\frac{7}{12}\right)^2$ can follow through their equivalent values from tree diagram	
	1^{st} A1 for both values correct or follow through from their original tree and + 2^{nd} A1 for a correct answer	
	Special Case $\frac{5}{12} \times \frac{4}{11}$ or $\frac{7}{12} \times \frac{6}{11}$ seen award M1A0A0	

Question Number	Scheme	Marks	
Q4 (a)	$\frac{2+3}{\text{their total}} = \frac{5}{\text{their total}} = \frac{1}{6} (** \text{ given answer}^{**})$	M1 A1cso	(2)
(b)	$\frac{4+2+5+3}{\text{total}}$, $=\frac{14}{30}$ or $\frac{7}{15}$ or $0.4\dot{6}$	M1 A1	(2)
(c)	$\mathbf{P}(A \cap C) = 0$	B1	(1)
(d)	P(C reads at least one magazine) = $\frac{6+3}{20} = \frac{9}{20}$	M1 A1	(2)
(e)	$P(B) = \frac{10}{30} = \frac{1}{3}, P(C) = \frac{9}{30} = \frac{3}{10}, P(B \cap C) = \frac{3}{30} = \frac{1}{10} \text{ or } P(B C) = \frac{3}{9}$	M1	
	$P(B) \times P(C) = \frac{1}{3} \times \frac{3}{10} = \frac{1}{10} = P(B \cap C)$ or $P(B C) = \frac{3}{9} = \frac{1}{3} = P(B)$	M1	
	So yes they are statistically independent	A1cso	(3)
		Tota	10
(a)	M1 for $\frac{2+3}{\text{their total}}$ or $\frac{5}{30}$		
(b)	M1 for adding at least 3 of "4, 2, 5, 3" and dividing by their total to give a probability Can be written as separate fractions substituted into the completely correct Addition Rule		
(c)	B1 for 0 or 0/30		
(d)	M1 for a denominator of 20 or $\frac{20}{30}$ leading to an answer with denominator of 20		
	$\frac{9}{20}$ only, 2/2		
(e)	 1st M1 for attempting all the required probabilities for a suitable test 2nd M1 for use of a correct test - must have attempted all the correct probabilities. Equality can be implied in line 2. A1 for fully correct test carried out with a comment 		