(1)

Leave blank

- 8. Liquid is pouring into a large vertical circular cylinder at a constant rate of 1600 cm³ s⁻¹ and is leaking out of a hole in the base, at a rate proportional to the square root of the height of the liquid already in the cylinder. The area of the circular cross section of the cylinder is 4000 cm².
 - (a) Show that at time t seconds, the height h cm of liquid in the cylinder satisfies the differential equation

$$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.4 - k\sqrt{h}, \text{ where } k \text{ is a positive constant.}$$
(3)

When h = 25, water is leaking out of the hole at 400 cm³ s⁻¹.

- (b) Show that k = 0.02 (1)
- (c) Separate the variables of the differential equation

$$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.4 - 0.02\sqrt{h},$$

to show that the time taken to fill the cylinder from empty to a height of 100 cm is given by

$$\int_{0}^{100} \frac{50}{20 - \sqrt{h}} \, \mathrm{d}h. \tag{2}$$

Using the substitution $h = (20 - x)^2$, or otherwise,

(d) find the exact value of
$$\int_0^{100} \frac{50}{20 - \sqrt{h}} \, dh.$$
 (6)

(e) Hence find the time taken to fill the cylinder from empty to a height of 100 cm, giving your answer in minutes and seconds to the nearest second.

Question 8 continued		blan
		Q
	(Total 13 marks)	
		1
	TOTAL FOR PAPER: 75 MARKS	

Leave	
blank	

7. (a) Express $\frac{2}{4-y^2}$ in partial fractions.

(3)

(b) Hence obtain the solution of

$$2\cot x \, \frac{\mathrm{d}y}{\mathrm{d}x} = (4 - y^2)$$

for which y = 0 at $x = \frac{\pi}{3}$, giving your answer in the form $\sec^2 x = g(y)$.

(8)

Leave	
blank	

5.	(a)	Find		9x+6	$\mathrm{d}x$,	x > 0
			J	\mathcal{X}		

 $\mathbf{J} = \mathbf{x} \tag{2}$

(b) Given that y = 8 at x = 1, solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(9x+6)\,y^{\frac{1}{3}}}{x}$$

giving your answer in the form $y^2 = g(x)$.

(6)

	blank
Question 5 continued	Diank
Question 5 continued	
	1

Leave blank

8.

Figure 2

Figure 2 shows a cylindrical water tank. The diameter of a circular cross-section of the tank is 6 m. Water is flowing into the tank at a constant rate of 0.48π m³ min⁻¹. At time *t* minutes, the depth of the water in the tank is *h* metres. There is a tap at a point *T* at the bottom of the tank. When the tap is open, water leaves the tank at a rate of $0.6\pi h$ m³ min⁻¹.

(a) Show that t minutes after the tap has been opened

$$75\frac{\mathrm{d}h}{\mathrm{d}t} = (4 - 5h)\tag{5}$$

When t = 0, h = 0.2

(b) Find the value of t when h = 0.5

/	-	٦
	4	
	.,	

Question 8 continued	blank
	-
	-
	-
	_
	_
	-
	-
	_
	_
	-
	-
	-
	_
	_
	-
	-
	_
	-
	-
	-
	_
	-
	-
	Q
(Total 11 marks	- <u> </u>
TOTAL FOR PAPER: 75 MARK	
END	

