1.

(a) $2 \log _{3}(x-5)=\log _{3}(x-5)^{2}$ B1
$\log _{3}(x-5)^{2}-\log _{3}(2 x-13)=\log _{3} \frac{(x-5)^{2}}{2 x-13}$
$\log _{3} 3=1$ seen or used correctly B1
$\log _{3}\left(\frac{P}{Q}\right)=1 \Rightarrow P=3 Q \quad\left\{\frac{(x-5)^{2}}{2 x-13}=3 \Rightarrow(x-5)^{2}=3(2 x-13)\right\} \quad$ M1
$x^{2}-16 x+64=0$ $x^{2}-16 x+64=0$
(*) A1 cso
5

Note

Marks may be awarded if equivalent work is seen in part (b).
$1^{\text {st }} \mathrm{M}: \log _{3}(x-5)^{2}-\log _{3}(2 x-13)=\frac{\log _{3}(x-5)^{2}}{\log _{3}(2 x-13)}$ is M0
$2 \log _{3}(x-5)-\log _{3}(2 x-13)=2 \log \frac{x-5}{2 x-13}$ is M0
$2^{\text {nd }} \mathrm{M}:$ After the first mistake above, this mark is available only if there is 'recovery' to the required

$$
\log _{3}\left(\frac{P}{Q}\right)=1 \Rightarrow P=3 Q \text {. Even then the final mark (cso) is lost. }
$$

‘Cancelling logs', e.g. $\frac{\log _{3}(x-5)^{2}}{\log _{3}(2 x-13)}=\frac{(x-5)^{2}}{2 x-13}$ will also lose the $2^{\text {nd }} M$.

A typical wrong solution:

$\log _{3} \frac{(x-5)^{2}}{2 x-13}=1 \Rightarrow \log _{3} \frac{(x-5)^{2}}{2 x-13}=3(*) \Rightarrow \frac{(x-5)^{2}}{2 x-13}=3$
$\Rightarrow \quad(x-5)^{2}=3(2 x-13)$
(*) Wrong step here
This, with no evidence elsewhere of $\log _{3} 3=1$, scores B1 M1 B0 M0 A0 However, $\log _{3} \frac{(x-5)^{2}}{2 x-13}=1 \Rightarrow \frac{(x-5)^{2}}{2 x-13}=3$ is correct and could lead to full marks.
(Here $\log _{3} 3=1$ is implied).

No log methods shown:

It is not acceptable to jump immediately to $\frac{(x-5)^{2}}{2 x-13}=3$. The only mark this scores is the $1^{\text {st }} \mathrm{B} 1$ (by generous implication).
(b) $\quad(x-8)(x-8)=0 \Rightarrow x=8 \quad$ Must be seen in part (b). M1 A1

Or: Substitute $x=8$ into original equation and verify.
Having additional solution(s) such as $x=-8$ loses the A mark.
$x=8$ with no working scores both marks.

Note

M1: Attempt to solve the given quadratic equation (usual rules), so the factors $(x-8)(x-8)$ with no solution is M0.
2. (a) $\log _{x} 64=2 \Rightarrow 64=x^{2}$

$$
\text { So } x=8
$$

A1 2

Note

M1 for getting out of logs
A1 Do not need to see $x=-8$ appear and get rejected. Ignore $x=-8$ as extra solution. $x=8$ with no working is M1 A1

Alternatives
Change base : (i) $\frac{\log _{2} 64}{\log _{2} x}=2$, so $\log _{2} x=3$ and $x=2^{3}$, is M1 or
(ii) $\frac{\log _{10} 64}{\log _{10} x}=2, \log x=\frac{1}{2} \log 64$ so $x=64^{\frac{1}{2}}$ is M1 then $x=8$ is A1

BUT $\log x=0.903$ so $x=8$ is M1A0 (loses accuracy mark)
(iii) $\log _{64} x=\frac{1}{2}$ so $x=64^{\frac{1}{2}}$ is M1 then $x=8$ is A1
(b) $\log _{2}(11-6 x)=\log _{2}(x-1)^{2}+3$
$\log _{2}\left[\frac{11-6 x}{(x-1)^{2}}\right]=3$

$$
\frac{11-6 x}{(x-1)^{2}}=2^{3}
$$

$\left\{11-6 x=8\left(x^{2}-2 x+1\right)\right\}$ and so $0=8 x^{2}-10 x-3$

$$
0=(4 x+1)(2 x-3) \Rightarrow x=\ldots
$$

$$
x=\frac{3}{2},\left[-\frac{1}{4}\right]
$$

Note

$1^{\text {st }} \mathrm{M} 1$ for using the nlogx rule
$2^{\text {nd }}$ M1 for using the $\log x-\log y$ rule or the $\log x+\log y$ rule as appropriate
$3^{\text {rd }}$ M1 for using 2 to the power- need to see 2^{3} or 8 (May see $3=\log _{2} 8$ used)

If all three \mathbf{M} marks have been earned and logs are still

present in equation do not give final M1. So solution stopping at
$\log _{2}\left[\frac{11-6 x}{(x-1)^{2}}\right]=\log _{2} 8$ would earn M1M1M0
$1^{\text {st }}$ A1 for a correct 3TQ
$4^{\text {th }}$ dependent M1 for attempt to solve or factorize their 3TQ to obtain $x=\ldots$ (mark depends on three previous M marks)
$2^{\text {nd }}$ A1 for 1.5 (ignore -0.25)
s.c 1.5 only - no working - is 0 marks
3. $2 \log _{5} x=\log _{5}\left(x^{2}\right)$,

$$
\log _{5}(4-x)-\log _{5}\left(x^{2}\right)=\log _{5} \frac{4-x}{x^{2}}
$$

$\log \left(\frac{4-x}{x^{2}}\right)=\log 5$
$5 x^{2}+x-4=0$ or $5 x^{2}+x=4$ o.e.
$(5 x-4)(x+1)=0 \quad x=\frac{4}{5} \quad(x=-1) \quad$ dM1 A1

Alternative 1

$\log _{5}(4-x)-1=2 \log _{5} x$ so $\log _{5}(4-x)-\log _{5} 5=2 \log _{5} x \quad$ M1
$\log _{5} \frac{4-x}{5}=2 \log _{5} x$
then could complete solution with $2 \log _{5} x=\log _{5}\left(x^{2}\right)$ B1
$\left(\frac{4-x}{5}\right)=x^{2} \quad 5 x^{2}+x-4=0$
Then as in first method $(5 x-4)(x+1)=0 \quad x=\frac{4}{5} \quad(x=-1) \quad$ dM1 A1 $\quad 6$

Notes

B1 is awarded for $2 \log x=\log x^{2}$ anywhere.
M1 for correct use of $\log A-\log B=\log \frac{A}{B}$
M1 for replacing 1 by $\log _{k} k$. A1 for correct quadratic
$\left(\log (4-x)-\log x^{2}=\log 5 \Rightarrow 4-x-x^{2}=5\right.$ is B1M0M1A0 M0A0)
dM1 for attempt to solve quadratic with usual conventions. (Only award if previous two \mathbf{M} marks have been awarded)
A1 for $4 / 5$ or 0.8 or equivalent (Ignore extra answer).

Special cases

Complete trial and error yielding 0.8 is $\mathbf{M 3}$ and $\mathbf{B 1}$ for $0.8 \mathbf{A 1}$, A1 awarded for each of two tries evaluated. i.e. 6/6
Incomplete trial and error with wrong or no solution is $0 / 6$
Just answer 0.8 with no working is $\mathbf{B 1}$
If log base 10 or base e used throughout - can score B1M1M1A0M1A0
4. Method 1 (Substituting $\mathrm{a}=3 \mathrm{~b}$ into second equation at some stage)

Using a law of logs correctly (anywhere) e.g. $\log _{3} a b=2 \quad$ M1
Substitution of $3 b$ for a (or a/3 for b) e.g. $\log _{3} 3 b^{2}=2 \quad$ M1
Using base correctly on correctly derived $\log _{3} \mathrm{p}=\mathrm{q}$ e.g. $3 b^{2}=3^{2} \quad$ M1
First correct value $\quad b=\sqrt{ } 3$ (allow $3^{1 / 2}$) A1
Correct method to find other value (dep. on at least first M mark)
Second answer $\quad a=3 b=3 \sqrt{ } 3$ or $\sqrt{ } 27$

Method 2 (Working with two equations in $\log _{3} \mathrm{a}$ and $\log _{3} \mathrm{~b}$)
"Taking logs" of first equation and "separating" $\begin{aligned} & \log _{3} a=\log _{3} 3+\log _{3} b \\ &\left(=1+\log _{3} b\right)\end{aligned} \quad$ M1
Solving simultaneous equations to find $\log _{3} a$ or $\log _{3} b$
$\left[\log _{3} a=11 / 2, \log _{3} b=1 / 2\right.$]
Using base correctly to find a or b
Correct value for a or $b a=3 \sqrt{ } 3$ or $b=\sqrt{ } 3 \quad$ A1
Correct method for second answer, dep. on first M; correct second answer M1; A1
[Ignore negative values]

Answers must be exact; decimal answers lose both A marks
There are several variations on Method 1, depending on the stage at which $a=3 b$ is used, but they should all mark as in scheme.
In this method, the first three method marks on Epen are for
(i) First M1: correct use of log law,
(ii) Second M1: substitution of $a=3 b$,
(iii) Third M1: requires using base correctly on correctly derived $\log _{3} \mathrm{p}=\mathrm{q}$

Three examples of applying first 4 marks in Method 1:

(i) $\log _{3} 3 b+\log _{3} b=2$ gains second M1
$\log _{3} 3+\log _{3} b+\log _{3} b=2$ gains first M1
($2 \log _{3} b=1, \log _{3} b=1 / 2$) no mark yet
$b=3^{1 / 2}$ gains third M1, and if correct A1
(ii) $\log _{3}(a b)=2$ gains first M1
$a b=3^{2}$ gains third M1
$3 b^{2}=3^{2}$ gains second M1
(iii) $\log _{3} 3 b^{2}=2$ has gained first 2 M marks
$\Rightarrow 2 \log _{3} 3 b=2$ or similar type of error
$\Rightarrow \log _{3} 3 b=1 \Rightarrow 3 b=3$ does not gain third M1, as $\log _{3} 3 b=1$
not derived correctly
5. (i) 2

B1 1
(ii) $2 \log 3=\log 3^{2}\left(\right.$ or $\left.2 \log p=\log p^{2}\right)$ B1
$\log _{a} p+=\log _{a} 11=\log _{a} 11 p=\log _{a} 99$ (Allow e.g. $\log _{a}\left(3^{2} \times 11\right)$) M1,A1 3
Ignore 'missing base' or wrong base.
The correct answer with no working scores full marks $\log _{a} 9 \times \log _{a} 11=\log _{a} 99$, or similar mistakes, score M0 A0.
6. (a) $\log 5^{x}=\log 8$ or $x=\operatorname{lo}_{5} 8$

Complete method for finding $x: x=\frac{\log 8}{\log 5}$ or $\frac{\ln 8}{\ln 5}$
$=1.29$ only
A1 3
(b) Combining two logs: $\log _{2} \frac{(x+1)}{x}$ or $\log _{2} 7 x$

Forming equation in x (eliminating logs) legitimately M1
$x=\frac{1}{6}$ or $0.1 \dot{6}$
A1 3
7. (a) $\log 3^{x}=\log 5 \quad$ M1
$x=\frac{\log 5}{\log 3} \quad$ or $\quad x \log 3=\log 5$
$=\underline{1.46}$
A1 cao
3
(b) $\quad \log _{2}\left(\frac{2 x+1}{x}\right)=2$

M1
$\frac{2 x+1}{x}=2^{2}$ or 4 M1
$2 x+1=4 x \quad$ M1
$x=\frac{1}{2}$ or 0.5
A1 4
8. (a) $\log _{5} x^{2}-\log _{5} y ;=2 \log _{5} x-\log _{5} y=2 \boldsymbol{a}-\boldsymbol{b}$

M1A1 2
(b) $\log _{5} 25=2$ or $\log _{5} y$

B1
$\log _{5} 25+\log _{5} x+\log _{5} y^{\frac{1}{2}} ;=2+\boldsymbol{a}+1 / 2 \boldsymbol{b}$
M1;A1 3
(c) $2 a-b=\mathbf{1}, 2+a+1 / 2 b=\mathbf{1}$ (must be in a and b)

B1 ft 1
(d) Using both correct equations to show that $a=-0.25\left(^{*}\right)$

M1
$b=-1.5$
B1
[Mark for (c) can be gained in (d)]
(e) Using correct method to find a value for x or a value of y :
$x=5^{-0.25}=\mathbf{0 . 6 6 9}, y=5^{-1.5}=\mathbf{0 . 0 8 9}$
[max. penalty -1 for more than 3 d.p.]
9. (a) $\log _{2}(16 x)=\log _{2} 16+\log _{2} x$

M1
A1 c.a.o 2
M1 Correct use of $\log (a b)=\log _{a}+\log _{b}$
(b) $\quad \log _{2}\left(\frac{x^{4}}{2}\right)=\log _{2} x^{4}-\log _{2} 2$

M1
$=4 \log 2 x-\log _{2} 2 \quad$ M1
$=\underline{4 a-1}\left(\right.$ accept $\left.4 \log _{2} x-1\right) \quad$ M1 3
M1 Correct use of $\log \left(\frac{a}{b}\right)=\ldots$
M1 Use of $\log x^{n}=n \log x$
(c) $\frac{1}{2}=4+a-(4 a-1)$ M1

$$
a=\frac{3}{2}
$$

A1

$$
\log _{2} x=\frac{3}{2} \quad \Rightarrow \quad x=2^{\frac{3}{2}}
$$

M1
$\underline{x=} \sqrt{8}$ or $\sqrt{2^{3}}$ or $(\sqrt{2})^{3}$
A1 4
M1 Use their (a) \& (b) to form equ in a
M1 Out of logs: $x=2^{a}$
A1 Must write x in surd form, follow through their rational a.
10. (a) $\frac{x^{2}+4 x+3}{x^{2}+x}=\frac{(x+3)(x+1)}{x(x+1)}$

Attempt to factorise numerator or denominator

$$
=\underline{\frac{x+3}{x}} \text { or } 1+\frac{3}{x} \text { or }(x+3) x^{-1}
$$

A1 2
(b) LHS $=\log _{2}\left(\frac{x^{2}+4 x+3}{x^{2}+x}\right)$

Use of $\log a-\log b$

$$
\begin{array}{lr}
\text { RHS }=2^{4} \text { or } 16 & \text { B1 } \\
x+3=16 x & \text { M1 (*) } \\
& \text { Linear or quadratic equation in } x \\
& (*) \text { dep }
\end{array}
$$

$$
x=\frac{3}{15} \text { or } \frac{1}{5} \text { or } 0.2
$$

A1 4
11. $\log _{3} x^{2}-\log _{3}(x-2)=2$

Use of $\log x^{n}$ rule
$\log _{3}\left(\frac{x^{2}}{x-2}\right)=2$
Use of $\log a-\log b$ rule
$\frac{x^{2}}{x-2}=3^{2}$
Getting out of logs M1
$x^{2}-9 x+18=0$
Correct $3 T Q=0$
A1
$(x-6)(x-3)=0$
Attempt to solve 3TQ
M1
$x=3,6$
Both A1

