

Question Number	Scheme	Marks
6	One tail test Method 1 $\mathrm{H}_{\mathrm{o}}: \mathrm{p}=0.2$ $\mathrm{H}_{1}: \mathrm{p}>0.2$ $X \sim \mathrm{~B}(5,0.2)$ may be implied $\begin{array}{\|l\|ll} \mathrm{P}(X \geq 3)=1-\mathrm{P}(X \leq 2) \\ & =1-0.9421 & \\ & =0.0579 & \\ & & \\ 0.05(X \geq 3)=1-0.9421=0.0579] \end{array} \quad \text { att } \mathrm{P}(X \geq 3) \mid \mathrm{P}(X \geq 4)$ (Do not reject H_{0}.) There is insufficient evidence at the 5% significance level that there is an increase in the number of times the taxi/driver is late. Or Linda's claim is not justified	B1 B1 M1 M1 A1 M1 B1 (7) Total 7
	(Do not reject H_{0}.) There is insufficient evidence at the 5% significance level that there is an increase in the number of times the taxi/driver is late. Or Linda's claim is not justified	B1 B1 M1 M1A1 M1 B1 (7)

Two tail test		
Method 1		
$\mathrm{H}_{0}: \mathrm{p}=0.2$		
$\mathrm{H}_{1}: \mathrm{p} \neq 0.2$		
$X \sim X \sim \mathrm{~B}(5,0.2)$		may be implied
$\begin{aligned} \mathrm{P}(X \geq 3) & =1-\mathrm{P}(X \leq 2) \\ & =1-0.9421 \end{aligned}$	$\begin{aligned} & {[\mathrm{P}(X \geq 3)=1-0.9421=0.0579]} \\ & \mathrm{P}(X \geq 4)=1-0.9933=0.0067 \end{aligned}$	$\operatorname{att} \mathrm{P}(X \geq 3) \mid \mathrm{P}(X \geq 4)$
$=0.0579$	$\mathrm{CR} X \geq 4$	awrt 0.0579
$0.0579>0.025$	$3 \leq 4$ or 3 is not in critical region or	3 is not significant

(Do not reject H_{0}.) There is insufficient evidence at the 5% significance level that there is an increase in the number of times the taxi/driver is late.
Or Linda’s claim is not justified

Method 2

$\mathrm{H}_{\mathrm{o}}: \mathrm{p}=0.2$
$\mathrm{H}_{1}: \mathrm{p} \neq 0.2$
$X \sim X \sim \mathrm{~B}(5,0.2)$ may be implied
$\mathrm{P}(X<3)=$

$|$| $[\mathrm{P}(X<3)=0.9421]$ | |
| :---: | :---: |
| $\mathrm{P}(X<4)=0.9933$ | att $\mathrm{P}(X<3)$ |
| CR $X \geq 4$ | |
| $3 \leq 4$ or 3 is not in critical region or 3 is not sighificant 0.942 | |
| $\mathrm{P}(X<4)$ | |

Do not reject H_{0}. There is insufficient evidence at the 5% significance level that

Special Case

If they use a probability of $\frac{1}{7}$ throughout the question they may gain B1 B1 M0 M1 A0 M1 B1.
NB they must attempt to work out the probabilities using $\frac{1}{7}$

Question Number	Scheme	Marks
5(a)	$X \sim \mathrm{~B}(15,0.5)$	B1 B1
(b)	$\begin{aligned} \mathrm{P}(X=8) & =\mathrm{P}(X \leq 8)-\mathrm{P}(X \leq 7) \quad \text { or }\left(\frac{15!}{8!7!}(p)^{8}(1-p)^{7}\right) \\ & =0.6964-0.5 \end{aligned}$	M1
	$=0.1964 \quad \text { awrt } 0.196$	A1 (2)
(c)	$\mathrm{P}(X \geq 4)=1-\mathrm{P}(X \leq 3)$	M1
	$=1-0.0176$	
	$=0.9824$	A1
		(2)
(d)	$\mathrm{H}_{0}: p=0.5$$\mathrm{H}_{1}: p>0.5$	B1
		B1
	$X \sim \mathrm{~B}(15,0.5)$	
	$\mathrm{P}(X \geq 13)$ $=1-\mathrm{P}(X \leq 12)$ $[\mathrm{P}(X \geq 12)=1-0.9824=0.0176]$ $=1-0.9963$ $\mathrm{P}(X \geq 13)=1-0.9963=0.0037$ \quad att $\mathrm{P}(X \geq 13)$	M1
	$=0.0037$ CR $X \geq 13$	A1
	$0.0037<0.01$ $13 \geq 13$	
	Reject H_{0} or it is significant or a correct statement in context from their values	M1
	There is sufficient evidence at the 1% significance level that the coin is biased in favour of heads	A1 (6)
	Or There is evidence that Sues belief is correct	
	Notes	
	(a) B1 for Binomial B1 for 15 and 0.5 must be in part a This need not be in the form written	
	(b) M1 attempt to find $\mathrm{P}(X=8)$ any method. Any value of pA1 awrt 0.196	
	Answer only full marks	
	(c) M1 for $1-\mathrm{P}(X \leq 3)$. A1 awrt 0.982	

(d) B1 for correct H_{0}. must use p or π

B1 for correct H_{1} must be one tail must use p or π
M1 attempt to find $\mathrm{P}(X \geq 13)$ correctly. E.g. $1-\mathrm{P}(X \leq 12)$
A1 correct probability or CR
To get the next 2 marks the null hypothesis must state or imply that $(p)=0.5$
M1 for correct statement based on their probability or critical region or a correct contextualised statement that implies that. not just 13 is in the critical region.

A1 This depends on their M1 being awarded for rejecting H_{0}. Conclusion in context. Must use the words biased in favour of heads or biased against tails or sues belief is correct .
NB this is a B mark on EPEN.

They may also attempt to find $\mathrm{P}(X<13)=0.9963$ and compare with 0.99

edexcel

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline Q4 (a) \& \begin{tabular}{l}
\begin{tabular}{lll}
\(X \sim \mathrm{~B}(20,0.3)\) \& \& \(\mathrm{P}(X \leq 2)=0.0355\) \\
\(\mathrm{P}(X \leq 9)=0.9520\) \& so \& \(\mathrm{P}(X \geq 10)=0.0480\)
\end{tabular} \\
Therefore the critical region is \(\{X \leq 2\} \cup\{X \geq 10\}\)
\[
0.0355+0.0480=0.0835 \quad \text { awrt }(0.083 \text { or } 0.084)
\] \\
11 is in the critical region there is evidence of a change/ increase in the proportion/number of customers buying single tins
\end{tabular} \& \begin{tabular}{ll}
M1 \& \\
A1 \& \\
A1 \& \\
A1A1 \& (5) \\
B1 \& (1) \\
B1ft \& \\
B1ft \& (2) \\
\& [8]
\end{tabular} \\
\hline (a)

(b)

(c) \& | M1 for $B(20,0.3)$ seen or used |
| :--- |
| $1^{\text {st }} \mathrm{A} 1$ for 0.0355 |
| $2^{\text {nd }}$ A1 for 0.048 |
| $3^{\text {rd }} \mathrm{A} 1$ for $(X) \leq 2$ or $(X)<3$ or [0,2] They get A0 if they write $\mathrm{P}(X \leq 2 / X<3)$ |
| $4^{\text {th }} \mathrm{A} 1(X) \geq 10$ or $(X)>9$ or [10,20] They get A0 if they write $\mathrm{P}(X \geq 10 / X>9)$ |
| $\mathbf{1 0} \leq X \leq 2$ etc is accepted |
| To describe the critical regions they can use any letter or no letter at all. It does not have to be X. |
| B1 correct answer only |
| $1^{\text {st }} \mathrm{B} 1$ for a correct statement about 11 and their critical region. |
| $2^{\text {nd }} \mathrm{B} 1$ for a correct comment in context consistent with their CR and the value 11 |
| Alternative solution |
| $1^{\text {st }} \mathrm{B} 0 \quad P(X \geq 11)=1-0.9829=0.0171$ since no comment about the critical region $2^{\text {nd }}$ B1 a correct contextual statement. | \&

\hline
\end{tabular}

