ROOTS OF QUADRATICS

Question number	Scheme	Marks
8.	(a) $x^{2}+k x+(8-k) \quad(=0) \quad 8-k$ need not be bracketed $\begin{align*} & b^{2}-4 a c=k^{2}-4(8-k) \\ & b^{2}-4 a c<0 \Rightarrow k^{2}+4 k-32<0 \tag{*} \end{align*}$ (b) $\begin{array}{lll} (k+8)(k-4)=0 & k=\ldots & \\ & k=-8 & k=4 \end{array}$ Choosing 'inside' region (between the two k values) $-8<k<4 \quad \text { or } \quad 4>k>-8$	M1 M1 A1cso (3) M1 A1 M1 (4) A1 7
	(a) $1^{\text {st }} \mathrm{M}$: Using the k from the right hand side to form 3-term quadratic in x ($=0$ ' can be implied), or... attempting to complete the square $\left(x+\frac{k}{2}\right)^{2}-\frac{k^{2}}{4}+8-k(=0)$ or equiv., using the k from the right hand side. For either approach, condone sign errors. $1^{\text {st }} \mathrm{M}$ may be implied when candidate moves straight to the discriminant $2^{\text {nd }} \mathrm{M}$: Dependent on the $1^{\text {st }} \mathrm{M}$. Forming expressions in k (with no x 's) by using b^{2} and 4ac. (Usually seen as the discriminant $b^{2}-4 a c$, but separate expressions are fine, and also allow the use of $b^{2}+4 a c$. (For 'completing the square' approach, the expression must be clearly separated from the equation in x). If b^{2} and $4 a c$ are used in the quadratic formula, they must be clearly separated from the formula to score this mark. For any approach, condone sign errors. If the wrong statement $\sqrt{b^{2}-4 a c}<0$ is seen, maximum score is M1 M1 A0. (b) Condone the use of x (instead of k) in part (b). 1 st M : Attempt to solve a 3 -term quadratic equation in k. It might be different from the given quadratic in part (a). Ignore the use of $<$ in solving the equation. The $1^{\text {st }}$ M1 A1 can be scored if -8 and 4 are achieved, even if stated as $k<-8, k<4$. Allow the first M1 A1 to be scored in part (a). $\begin{aligned} & \text { N.B. ' } k>-8, k<4 \text { ' scores } 2^{\text {nd }} \mathrm{M} 1 \text { A0 } \\ & \text { ' } k>-8 \text { or } k<4 \text { ' scores } 2^{\text {nd }} \mathrm{M} 1 \mathrm{~A} 0 \\ & \text { ' } k>-8 \text { and } k<4 \text { ' scores } 2^{\text {nd }} \text { M1 A1 } \\ & \text { ' } k=-7,-6,-5,-4,-3,-2,-1,0,1,2,3 \text { ' scores } 2^{\text {nd }} \text { M0 A0 } \end{aligned}$ Use of \leq (in the answer) loses the final mark.	

\begin{tabular}{|c|c|}
\hline Question number \& Scheme Marks

\hline 8. (a)
(b) \&

\hline (a)

(b) \& | M1 for attempting $b^{2}-4 a c$ with one of b or a correct. <0 not needed for M1 |
| :--- |
| This may be inside a square root. |
| A1cso for simplifying to printed result with no incorrect working or statements seen. |
| Need an intermediate step |
| e.g. $q^{2}--8 q<0$ or $q^{2}-4 \times 2 q \times-1<0$ or $q^{2}-4(2 q)(-1)<0$ or $q^{2}-8 q(-1)<0$ or $q^{2}-8 q \times-1<0$ |
| i.e. must have \times or brackets on the $4 a c$ term |
| <0 must be seen at least one line before the final answer. |
| M1 for factorizing or completing the square or attempting to solve $q^{2} \pm 8 q=0$. A method that would lead to 2 values for q. The "= 0 " may be implied by values appearing later. |
| $1^{\text {st }} \mathrm{A} 1$ for $q=0$ and $q=-8$ |
| $2^{\text {nd }}$ A1 for $-8<q<0$. Can follow through their cvs but must choose "inside" region. |
| $q<0, q>-8$ is A0, $q<0$ or $q>-8$ is A0, $(-8,0)$ on its own is A0 |
| BUT " $q<0$ and $q>-8$ " is A1 |
| Do not accept a number line for final mark |

\hline
\end{tabular}

Question Number	Scheme	Marks
7 (a) (b)	$b^{2}-4 a c>0 \Rightarrow 16-4 k(5-k)>0 \quad$ or equiv., e.g. $16>4 k(5-k)$ So $\quad k^{2}-5 k+4>0$ (Allow any order of terms, e.g. $4-5 k+k^{2}>0$) Critical Values $\begin{align*} (k-4)(k-1) & =0 \quad k=\ldots \tag{*}\\ k & =1 \text { or } 4 \end{align*}$ Choosing "outside" region $k<1 \text { or } k>4$	M1A1 Alcso (3) M1 A1 M1 (4) [7]

For this question, ignore (a) and (b) labels and award marks wherever correct work is seen.
(a) M1 for attempting to use the discriminant of the initial equation (>0 not required, but substitution of a, b and c in the correct formula is required).
If the formula $b^{2}-4 a c$ is seen, at least 2 of a, b and c must be correct.
If the formula $b^{2}-4 a c$ is not seen, all 3 (a, b and c) must be correct.
This mark can still be scored if substitution in $b^{2}-4 a c$ is within the quadratic formula.
This mark can also be scored by comparing b^{2} and $4 a c$ (with substitution).
However, use of $b^{2}+4 a c$ is M0.
$1^{\text {st }}$ A1 for fully correct expression, possibly unsimplified, with $>$ symbol. NB must appear before the last line, even if this is simply in a statement such as $b^{2}-4 a c>0$ or 'discriminant positive'.
Condone a bracketing slip, e.g. $16-4 \times k \times 5-k$ if subsequent work is correct and convincing.
$2^{\text {nd }} \mathrm{A} 1$ for a fully correct derivation with no incorrect working seen.
Condone a bracketing slip if otherwise correct and convincing.
Using $\sqrt{b^{2}-4 a c}>0$:
Only available mark is the first M1 (unless recovery is seen).
(b)
$1^{\text {st }}$ M1 for attempt to solve an appropriate 3TQ
$1^{\text {st }}$ A1 for both $k=1$ and 4 (only the critical values are required, so accept, e.g. $k>1$ and $k>4$). **
$2^{\text {nd }}$ M1 for choosing the "outside" region. A diagram or table alone is not sufficient.
Follow through their values of k.
The set of values must be 'narrowed down' to score this M mark... listing everything $k<1,1<k<4, k>4$ is M0.
$2^{\text {nd }}$ A1 for correct answer only, condone " $k<1, k>4$ " and even " $k<1$ and $k>4$ ", but " $1>k>4$ " is A0.
** Often the statement $k>1$ and $k>4$ is followed by the correct final answer. Allow full marks.
Seeing 1 and 4 used as critical values gives the first M1 A1 by implication.
In part (b), condone working with x 's except for the final mark, where the set of values must be a set of values of k (i.e. 3 marks out of 4).

Use of \leq (or \geq) in the final answer loses the final mark.

Question Number	Scheme	Marks
Q6	$b^{2}-4 a c$ attempted, in terms of p. $(3 p)^{2}-4 p=0 \quad$ o.e. Attempt to solve for p e.g. $p(9 p-4)=0 \quad$ Must potentially lead to $p=k, k \neq 0$ $p=\frac{4}{9}$ (Ignore $p=0$, if seen)	M1 A1 M1 Alcso
	$1^{\text {st }} \mathrm{M} 1$ for an attempt to substitute into $b^{2}-4 a c$ or $b^{2}=4 a c$ with b or c correct Condone x 's in one term only. This can be inside a square root as part of the quadratic formula for example. Use of inequalities can score the M marks only $1^{\text {st }}$ A1 for any correct equation: $(3 p)^{2}-4 \times 1 \times p=0$ or better $2^{\text {nd }} \mathrm{M} 1$ for an attempt to factorize or solve their quadratic expression in p. Method must be sufficient to lead to their $p=\frac{4}{9}$. Accept factors or use of quadratic formula or $\left(p \pm \frac{2}{9}\right)^{2}=k^{2}$ (o.e. eg) $\left(3 p \pm \frac{2}{3}\right)^{2}=k^{2}$ or equivalent work on their eqn. $9 p^{2}=4 p \Rightarrow \frac{9 p^{2}}{k}=4$ which would lead to $9 p=4$ is OK for this $2^{\text {nd }}$ M1 ALT Comparing coefficients M1 for $(x+\alpha)^{2}=x^{2}+\alpha^{2}+2 \alpha x$ and A1 for a correct equation eg $3 p=2 \sqrt{p}$ M1 for forming solving leading to $\sqrt{p}=\frac{2}{3}$ or better Use of quadratic/discriminant formula (or any formula) Rule for awarding M mark If the formula is quoted accept some correct substitution leading to a partially correct expression. If the formula is not quoted only award for a fully correct expression using their values.	

Question number	Scheme	Marks
Q10	(a) $(x+2 k)^{2}$ or $\left(x+\frac{4 k}{2}\right)^{2}$ $(x \pm F)^{2} \pm G \pm 3 \pm 11 k \quad$ (where F and G are any functions of k, not involving x) $(x+2 k)^{2}-4 k^{2}+(3+11 k)$ Accept unsimplified equivalents such as $\left(x+\frac{4 k}{2}\right)^{2}-\left(\frac{4 k}{2}\right)^{2}+3+11 k$, and i.s.w. if necessary.	M1 M1 A1 (3)
	(b) Accept part (b) solutions seen in part (a). $" 4 k^{2}-11 k-3 "=0 \quad(4 k+1)(k-3)=0 \quad k=\ldots,$ [Or, 'starting again', $b^{2}-4 a c=(4 k)^{2}-4(3+11 k)$ and proceed to $k=\ldots$] $-\frac{1}{4}$ and 3 (Ignore any inequalities for the first 2 marks in (b)). Using $b^{2}-4 a c<0$ for no real roots, i.e. " $4 k^{2}-11 k-3 "<0$, to establish inequalities involving their two critical values m and n (even if the inequalities are wrong, e.g. $k<m, k<n$). $-\frac{1}{4}<k<3$ (See conditions below) Follow through their critical values. The final A1ft is still scored if the answer $m<k<n$ follows $k<m, k<n$. Using x instead of k in the final answer loses only the $2^{\text {nd }} \mathrm{A}$ mark, (condone use of x in earlier working).	M1 A1 M1 Alft (4)
	(c)ShapeMinimum in correct quadrant, not touching the x-axis, not on the y-axis, and there must be no other minimum or maximum. (0, 14) or 14 on y-axis. Allow (14, 0) marked on y-axis.n.b. Minimum is at $(-2,10)$, (but there is no mark for this).	B1 B1 B1 (3) [10]
	(b) $1^{\text {st }} \mathrm{M}$: Forming and solving a 3-term quadratic in k (usual rules.. see general principles at end of scheme). The quadratic must come from " $b^{2}-4 a c$ ", or from the " q " in part (a). Using wrong discriminant, e.g. " $b^{2}+4 a c$ " will score no marks in part (b). $2^{\text {nd }} \mathrm{M}$: As defined in main scheme above. $2^{\text {nd }}$ A1ft: $m<k<n$, where $m<n$, for their critical values m and n. Other possible forms of the answer (in each case $m<n$): (i) $n>k>m$ (ii) $k>m$ and $k<n$ In this case the word "and" must be seen (implying intersection). (iii) $k \in(m, n)$ (iv) $\{k: k>m\} \cap\{k: k<n\}$ Not just a number line. Not just $k>m, k<n$ (without the word "and"). (c) Final B1 is dependent upon a sketch having been attempted in part (c).	

