ROOTS OF QUADRATICS

Question number	Scheme	Marks
8.	(a) $x^2 + kx + (8 - k)$ (= 0) $8 - k$ need not be bracketed	- M1
	$b^2 - 4ac = k^2 - 4(8 - k)$	- M1
	$b^{2} - 4ac < 0 \implies k^{2} + 4k - 32 < 0 $ (*) (b) $(k+8)(k-4) = 0$ $k =$ k = -8 $k = 4$	A1cso (3) M1 A1
	Choosing 'inside' region (between the two k values) -8 < k < 4 or $4 > k > -8$	M1 A1 (4) 7
	(a) 1 st M: Using the <i>k</i> from the right hand side to form 3-term quadratic in <i>x</i> ('= 0' can be implied), or attempting to complete the square $\left(x + \frac{k}{2}\right)^2 - \frac{k^2}{4} + 8 - k$ (= 0) or equiv., using the <i>k</i> from the right hand side. For either approach, <u>condone sign errors</u> . 1 st M may be implied when candidate moves straight to the discriminant 2 nd M: Dependent on the 1 st M. Forming expressions in <i>k</i> (with no <i>x</i> 's) by using b^2 and $4ac$. (Usually seen as the discriminant $b^2 - 4ac$, but separate expressions are fine, and also allow the use of $b^2 + 4ac$. (For 'completing the square' approach, the expression must be clearly separated from the equation in <i>x</i>). If b^2 and $4ac$ are used in the <u>quadratic formula</u> , they must be clearly separated from the formula to score this mark.	
	separated from the formula to score this mark. For any approach, <u>condone sign errors</u> . If the wrong statement $\sqrt{b^2 - 4ac} < 0$ is seen, maximum score is M1 M1 A0. (b) Condone the use of x (instead of k) in part (b). 1st M: Attempt to solve a 3-term quadratic equation in k. It <u>might</u> be different from the given quadratic in part (a). Ignore the use of < in solving the equation. The 1 st M1 A1 can be scored if -8 and 4 are achieved, even if stated as $k < -8$, $k < 4$. <u>Allow</u> the first M1 A1 to be scored in part (a). N.B. ' $k > -8$, $k < 4$ ' scores 2 nd M1 A0 ' $k > -8$ or $k < 4$ ' scores 2 nd M1 A0 ' $k > -8$ and $k < 4$ ' scores 2 nd M1 A1 ' $k = -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3$ ' scores 2 nd M0 A0	

Question number	Scheme	Marks	
8. (a)	[No real roots implies $b^2 - 4ac < 0$.] $b^2 - 4ac = q^2 - 4 \times 2q \times (-1)$ So $q^2 - 4 \times 2q \times (-1) < 0$ i.e. $q^2 + 8q < 0$ (*)	M1 A1cso (2)	
(b)	$q(q+8) = 0 or (q \pm 4)^2 \pm 16 = 0 (2 cvs) -8 < q < 0 or q \in (-8, 0) or q < 0 and q > -8$	M1 A1 A1ft (3) 5	
(a)	 M1 for attempting b²-4ac with one of b or a correct. < 0 not needed for M1 This may be inside a square root. A1cso for simplifying to printed result with no incorrect working or statements seen. Need an intermediate step e.g. q²8q < 0 or q² - 4×2q×-1<0 or q² - 4(2q)(-1) < 0 or q² - 8q(-1) < 0 or q² - 8q×-1<0 i.e. must have × or brackets on the 4ac term < 0 must be seen at least one line before the final answer. 		
(b)	M1 for factorizing or completing the square or attempting to solve $q^2 \pm 8q = 0$. would lead to 2 values for q . The "= 0" may be implied by values appearing 1 st A1 for $q = 0$ and $q = -8$ 2 nd A1 for $-8 < q < 0$. Can follow through their cvs but must choose "inside" reg q < 0, q > -8 is A0, $q < 0$ or $q > -8$ is A0, (-8, 0) on its own is A0 BUT " $q < 0$ and $q > -8$ " is A1 Do not accept a number line for final mark	A method that ng later. ion.	

Question Number	Scheme	Marks	6
7 (a)	$b^2 - 4ac > 0 \Rightarrow 16 - 4k(5-k) > 0$ or equiv., e.g. $16 > 4k(5-k)$	M1A1	
	So $k^2 - 5k + 4 > 0$ (Allow any order of terms, e.g. $4 - 5k + k^2 > 0$) (*)	A1cso	(3)
(b)	<u>Critical Values</u> $(k-4)(k-1) = 0$ $k = \dots$ k = 1 or 4	M1 A1	
	Choosing "outside" region	M1	
	k < 1 or $k > 4$	A1	(4) [7]
	For this question, ignore (a) and (b) labels and award marks wherever correct work is se	een.	
(a)	M1 for attempting to use the discriminant of the initial equation (> 0 not required, but substitution of a, b and c in the correct formula is required). If the formula $b^2 - 4ac$ is seen, at least 2 of a, b and c must be correct. If the formula $b^2 - 4ac$ is <u>not</u> seen, all 3 (a, b and c) must be correct. This mark can still be scored if substitution in $b^2 - 4ac$ is within the quadratic formula. This mark can also be scored by comparing b^2 and $4ac$ (with substitution). However, use of $b^2 + 4ac$ is M0. 1 st A1 for fully correct expression, possibly unsimplified, with > symbol. NB must appear before the last line, even if this is simply in a statement such as $b^2 - 4ac > 0$ or 'discriminant positive'. Condone a bracketing slip, e.g. $16 - 4 \times k \times 5 - k$ if subsequent work is correct and convincing. 2 nd A1 for a fully correct derivation with no incorrect working seen. Condone a bracketing slip if otherwise correct and convincing. $Using \sqrt{b^2 - 4ac} > 0$: Only available mark is the first M1 (unless recovery is seen).		
(b)	 1st M1 for attempt to solve an appropriate 3TQ 1st A1 for both k = 1 and 4 (only the critical values are required, so accept, e.g. k > 1 at 2nd M1 for choosing the "outside" region. A diagram or table alone is not sufficient. Follow through their values of k. The set of values must be 'narrowed down' to score this M mark listing every k < 1, 1 < k < 4, k > 4 is M0. 2nd A1 for correct answer only, condone "k < 1, k > 4" and even "k < 1 and k > 4", but "1 > k > 4" is A0. ** Often the statement k > 1 and k > 4 is followed by the correct final answer. Allow fulse seeing 1 and 4 used as critical values gives the first M1 A1 by implication. In part (b), condone working with x's except for the final mark, where the set of values rol values of k (i.e. 3 marks out of 4). Use of ≤ (or ≥) in the final answer loses the final mark. 	nd <i>k</i> > 4). ything ll marks. must be a	** set

PMT

edexcel

Question Number	Scheme	Mark	S
Q6	$b^{2} - 4ac$ attempted, in terms of p . $(3p)^{2} - 4p = 0$ o.e. Attempt to solve for p e.g. $p(9p-4) = 0$ Must potentially lead to $p = k, k \neq 0$ $p = \frac{4}{9}$ (Ignore $p = 0$, if seen)	M1 A1 M1 A1cso	[4]
	1 st M1 for an attempt to substitute into $b^2 - 4ac$ or $b^2 = 4ac$ with <i>b</i> or <i>c</i> correct Condone <i>x</i> 's in one term only. This can be inside a square root as part of the quadratic formula for example. Use of inequalities can score the M marks only 1 st A1 for any correct equation: $(3p)^2 - 4 \times 1 \times p = 0$ or better 2 nd M1 for an attempt to factorize or solve their quadratic expression in <i>p</i> . Method must be sufficient to lead to their $p = \frac{4}{9}$. Accept factors or use of quadratic formula or $(p \pm \frac{2}{9})^2 = k^2$ (o.e. eg) $(3p \pm \frac{2}{3})^2 = k^2$ or equivalent work on their eqn. $9p^2 = 4p \Rightarrow \frac{9p^3}{R} = 4$ which would lead to $9p = 4$ is OK for this 2^{nd} M1 ALT Comparing coefficients M1 for $(x + \alpha)^2 = x^2 + \alpha^2 + 2\alpha x$ and A1 for a correct equation eg $3p = 2\sqrt{p}$ M1 for forming solving leading to $\sqrt{p} = \frac{2}{3}$ or better Use of quadratic/discriminant formula (or any formula) Rule for awarding M mark If the formula is quoted accept some correct substitution leading to a partially correct expression. If the formula is not quoted only award for a fully correct expression using their values.		

Question	Scheme	Marks
Q10	(a) $(r+2k)^2$ or $(r+\frac{4k}{2})^2$	M1
	$\begin{pmatrix} a \\ c \end{pmatrix} \begin{pmatrix} x + 2k \end{pmatrix} = \begin{pmatrix} a \\ c \end{pmatrix}$	
	$(x \pm F)^2 \pm G \pm 3 \pm 11k$ (where F and G are <u>any</u> functions of k, not involving x)	M1
	$(x+2k)^2 - 4k^2 + (3+11k)$ Accept unsimplified equivalents such as	A1 (3)
	$\left(x+\frac{4k}{2}\right)^2 - \left(\frac{4k}{2}\right)^2 + 3 + 11k$, and i.s.w. if necessary.	(3)
	(b) Accept part (b) solutions seen in part (a).	
	$"4k2 - 11k - 3" = 0 \qquad (4k + 1)(k - 3) = 0 \qquad k = \dots,$	M1
	[Or, 'starting again', $b^2 - 4ac = (4k)^2 - 4(3+11k)$ and proceed to $k =$]	
	$-\frac{1}{4}$ and 3 (Ignore any inequalities for the first 2 marks in (b)).	A1
	Using $b^2 - 4ac < 0$ for no real roots, i.e. $ 4k^2 - 11k - 3 < 0$, to establish inequalities involving their two critical values <i>m</i> and <i>n</i> (even if the inequalities are wrong, e.g. $k < m, k < n$).	M1
	$-\frac{1}{4} < k < 3$ (See conditions below) Follow through their critical values.	A1ft
	The final A1ft is still scored if the answer $m < k < n$ follows $k < m$, $k < n$. <u>Using x instead of k in the final answer</u> loses only the 2 nd A mark, (condone use of x in earlier working).	(4)
	(c) Shape (seen in (c))	B1
	Minimum in correct quadrant, <u>not</u> touching the <i>x</i> -axis, <u>not</u> on the <i>y</i> -axis, and there must be no other minimum or maximum.	B1
	(0, 14) or 14 on y-axis. Allow (14, 0) marked on y-axis.	(3)
	n.b. Minimum is at $(-2,10)$, (but there is no mark for this).	[10]
	(b) 1 st M: Forming and solving a 3-term quadratic in k (usual rules see general principles at end of scheme). The quadratic must come from " $b^2 - 4ac$ ", or from the "a" in part (a)	
	Using wrong discriminant, e.g. " $b^2 + 4ac$ " will score no marks in part (b).	
	2^{nd} M: As defined in main scheme above. 2^{nd} A1ft: $m < k < n$, where $m < n$, for their critical values m and n . Other possible forms of the answer (in each case $m < n$): (i) $m > k > m$	
	(i) $n > \kappa > m$ (ii) $k > m$ and $k < n$ In this case the word "and" must be seen (implying intersection).	
	(iii) $k \in (m, n)$ (iv) $\{k : k > m\} \cap \{k : k < n\}$	
	Not just a number line. Not just $k > m$ $k < n$ (without the word "and")	
	$\frac{1101}{100} \text{ Just } \kappa > m, \kappa < n \text{ (without the word all).}$	
	(c) Final B1 is dependent upon a sketch having been attempted in part (c).	

Question Number	Scheme	Marks	
4. (a)	$(x+3)^2 + 2$ or $p = 3$ or $\frac{6}{2}$ q = 2	B1 B1	(2)
(b)	U shape with min in 2^{nd} quad (Must be above <i>x</i> -axis and not on <i>y</i> =axis)	B1	
	(Condone (11,0) marked on y-axis)	B1	(2)
(C)	$b^2 - 4ac = 6^2 - 4 \times 11$ $= -8$ Notes	A1	(2) 6
(a)	Ignore an "= 0" so $(x+3)^2 + 2 = 0$ can score both marks		
(b)	 The U shape can be interpreted fairly generously. Penalise an obvious V on 1st B1 on The U needn't have equal "arms" as long as there is a clear min that "holds water" 1st B1 for U shape with minimum in 2nd quad. Curve need not cross the y-axis but minimum should NOT touch x-axis and should be left of (not on) y-axis 2nd B1 for U shaped curve crossing at (0, 11). Just 11 marked on y-axis is fine. The point must be marked on the sketch (do not allow from a table of values) Condone stopping at (0, 11) 	ly.	
(c)	M1 for some correct substitution into $b^2 - 4ac$. This may be as part of the quadratic formula but must be in part (c) and must be only numbers (no <i>x</i> terms present). Substitution into $b^2 < 4ac$ or $b^2 = 4ac$ or $b^2 > 4ac$ is M0 A1 for $- 8$ only. If they write $- 8 < 0$ treat the < 0 as ISW and award A1 If they write $- 8 \ge 0$ then score A0 A substitution in the quadratic formula leading to $- 8$ inside the square root is A So substituting into $b^2 - 4ac < 0$ leading to $- 8 < 0$ can score M1A1. Only award marks for use of the discriminant in part (c)	0.	