Indices 2008-13

Question number	Scheme	Marks	
2.	(a) 2	B1	(1)
	(b) x^9 seen, or (answer to (a)) ³ seen, or $(2x^3)^3$ seen.	M1	
	$8x^{9}$	A1	(2)
			3
	(b) M: Look for x^9 first if seen, this is M1.		
	If not seen, look for $(answer to (a))^3$, e.g. $2^3 \dots$ this would score M1 even if it does not subsequently become 8. (Similarly for other answers to (a)).		
	In $(2x^3)^3$, the 2^3 is implied, so this scores the M mark.		
	Negative answers:		
	(a) Allow -2 . Allow ± 2 . Allow '2 or -2 '.		
	(b) Allow $\pm 8x^9$. Allow $\cdot 8x^9$ or $-8x^9$ '.		
	N.B. If part (a) is wrong, it is possible to 'restart' in part (b) and to score full marks in part (b).		

January 2009 6663 Core Mathematics C1 Mark Scheme

Que Num	stion 1ber	Scheme	M	arks
1	(a)	5 (±5 is B0)	B1	(1)
	(b)	$\frac{1}{(\text{their 5})^2}$ or $\left(\frac{1}{\text{their 5}}\right)^2$	M1	
		$=\frac{1}{25}$ or 0.04 $(\pm\frac{1}{25}$ is A0)	A1	(2) [3]
	(b)	M1 follow through their value of 5. Must have reciprocal and square.		
		5^{-2} is <u>not</u> sufficient to score this mark, unless $\frac{1}{5^2}$ follows this.		
		A negative introduced at any stage can score the M1 but not the A1, e.g. $125^{-\frac{2}{3}} = \left(-\frac{1}{5}\right)^2 = \frac{1}{25}$ scores M1 A0		
		$125^{-\frac{2}{3}} = -\left(\frac{1}{5}\right)^2 = -\frac{1}{25}$ scores M1 A0. Correct answer with no working scores both marks.		
		<u>Alternative</u> : $\frac{1}{\sqrt[3]{125^2}}$ or $\frac{1}{(125^2)^{\frac{1}{3}}}$ M1 (reciprocal and the correct number squared) $\left(=\frac{1}{\sqrt[3]{15625}}\right)$		
		$=\frac{1}{25}$ A1		

January 2011 Core Mathematics C1 6663 Mark Scheme

Question Number	Scheme	Marks	
1. (a)	$16^{\frac{1}{4}} = 2$ or $\frac{1}{16^{\frac{1}{4}}}$ or better	M1	
	$\left(16^{-\frac{1}{4}}\right) = \frac{1}{2} \text{ or } 0.5 \qquad (\text{ignore } \pm)$	A1	
			(2)
(b)	$\left(2x^{-\frac{1}{4}}\right)^4 = 2^4 x^{-\frac{4}{4}}$ or $\frac{2^4}{x^{\frac{4}{4}}}$ or equivalent	M1	
	$x\left(2x^{-\frac{1}{4}}\right)^4 = 2^4$ or 16	A1 cao	
			(2) 4
	Notes		
(a)			
	This may be awarded if 2 is seen or for reciprocal of their $16^{\frac{1}{4}}$		
	s.c $\frac{1}{4}$ is M1 A0, also 2^{-1} is M1 A0		
	$\pm \frac{1}{2}$ is not penalised so M1 A1		
(b)	1		
	A1 for cancelling the x and simplifying to one of these two forms.		
	Correct answers with no working get full marks		

June 2011	
Core Mathematics C1	6663
Mark Scheme	

Question Number	Scheme	Marks	
1. (a)	5 (or ±5)	B1 (1)	
(b)	$25^{-\frac{3}{2}} = \frac{1}{25^{\frac{3}{2}}} \text{ or } 25^{\frac{3}{2}} = 125 \text{ or better}$ $\frac{1}{125} \text{ or } 0.008 \qquad (\text{or } \pm \frac{1}{125})$	M1	
	$\frac{1}{125}$ or 0.008 (or $\pm \frac{1}{125}$)	A1	
		(2) 3	
	Notes		
	(a) Give B1 for 5 or ± 5 Anything else is B0 (including just -5)	1	
	(b) M: Requires reciprocal OR $25^{\frac{3}{2}} = 125$ Accept $\frac{1}{5^3}, \frac{1}{\sqrt{15625}}, \frac{1}{25\times5}, \frac{1}{25\sqrt{25}}, \frac{1}{\sqrt{25^3}}$ for M1 Correct answer with no working (or notation errors in working) scores both marks i.e. M1 A1 M1A0 for $-\frac{1}{125}$ without $+\frac{1}{125}$		

Question Number	Scheme	Ma	rks	
2. (a)	$\left\{ (32)^{\frac{3}{5}} \right\} = \left(\sqrt[5]{32}\right)^3 \text{ or } \sqrt[5]{(32)^3} \text{ or } 2^3 \text{ or } \sqrt[5]{32768}$	M1		
	= 8	A1		
	$\left[\left(25r^{4}\right)^{-\frac{1}{2}}\right]$ $\left(4\right)^{\frac{1}{2}}$ $\left(5r^{2}\right)^{-1}$ 1		[2]	
(b)	$\left\{ \left(\frac{25x^4}{4}\right)^{-\frac{1}{2}} \right\} = \left(\frac{4}{25x^4}\right)^{\frac{1}{2}} \text{ or } \left(\frac{5x^2}{2}\right)^{-1} \text{ or } \frac{1}{\left(\frac{25x^4}{4}\right)^{\frac{1}{2}}}$ See notes below	M1		
	$= \frac{2}{5x^2} \text{ or } \frac{2}{5}x^{-2}$ See notes for other alternatives	A1		
			[2] 4	
	Notes			
(a)	M1 : for a full correct interpretation of the fractional power. Note: $5 \times (32)^3$ is M0.			
	A1: for 8 only. Note: Award M1A1 for writing down 8.			
(b)	M1: For use of $\frac{1}{2}$ OR use of -1			
	Use of $\frac{1}{2}$: Candidate needs to demonstrate the they have rooted all three elements in their bracket.			
	Use of -1: Either Candidate has $\frac{1}{\text{Bracket}}$ or $\left(\frac{Ax^{C}}{B}\right)$ becomes $\left(\frac{B}{Ax^{C}}\right)$.			
	Allow M1 for			
	• $\left(\frac{4}{25x^4}\right)^{\frac{1}{2}}$ or $\left(\frac{5x^2}{2}\right)^{-1}$ or $\frac{1}{\left(\frac{25x^4}{4}\right)^{\frac{1}{2}}}$ or $\sqrt{\left(\frac{4}{25x^4}\right)}$ or $\frac{1}{\sqrt{\left(\frac{25x^4}{4}\right)}}$ or $\left(\frac{\frac{1}{25x^4}}{\frac{1}{4}}\right)^{\frac{1}{2}}$ or $\frac{\frac{1}{5x^2}}{\frac{1}{2}}$	or $\frac{\frac{1}{5}x}{\frac{1}{2}}$	2	
	or $-\left(\frac{5x^2}{2}\right)$ or $\left(\frac{-5x^{-2}}{-2}\right)$ or $-\left(\frac{5x^{-2}}{2}\right)$ or $\frac{5x^{-2}}{2}$			
	• $\left(\frac{4}{25x^4}\right)^K$ or $\left(\frac{5x^2}{2}\right)^C$ where <i>K</i> , <i>C</i> are any powers including 1.			
	A1: for either $\frac{2}{5x^2}$ or $\frac{2}{5}x^{-2}$ or $0.4x^{-2}$ or $\frac{0.4}{x^2}$.			
	Note: $\left(\sqrt{\left(\frac{25x^4}{4}\right)}\right)^{-1}$ is not enough work by itself for the method mark.			
	Note: A final answer of $\frac{1}{\frac{5}{2}x^2}$ or $\frac{1}{2\frac{1}{2}x^2}$ or $\frac{1}{2.5x^2}$ is A0.			
	Note: Also allow $\pm \frac{2}{5x^2}$ or $\pm \frac{2}{5}x^{-2}$ or $\pm 0.4x^{-2}$ or $\pm \frac{0.4}{x^2}$ for A1.			

Question Number	Scheme	Marks	
2.			
	$(8^{2x+3} = (2^3)^{2x+3}) = 2^{3(2x+3)}$ or 2^{ax+b} with $a = 6$ or $b = 9$	M1	
	$= 2^{6x+9}$ or $= 2^{3(2x+3)}$ as final answer with no errors or $(y =)6x + 9$ or $3(2x+3)$	A1	
		[2]	
		2 marks	
	Notes		
	M1: Uses $8 = 2^3$, and multiplies powers $3(2x + 3)$. Does not add powers. (Just $8 = 2^3$ or $8^{\frac{1}{3}} = 2$ is M0)		
	A1: Either 2^{6x+9} or $= 2^{3(2x+3)}$ or $(y=)6x+9$ or $3(2x+3)$		
	Note: Examples: 2^{6x+3} scores M1A0		
	: $8^{2x+3} = (2^3)^{2x+3} = 2^{3+2x+3}$ gets M0A0		
	Special case: : $= 2^{6x} 2^9$ without seeing as single power M1A0		
	Alternative method using logs: $8^{2x+3} = 2^y \Rightarrow (2x+3)\log 8 = y\log 2 \Rightarrow y = \frac{(2x+3)\log 8}{\log 2}$	M1	
	So $(y =)6x + 9$ or $3(2x + 3)$	A1 [2]	

Question Number	Scheme		Marks
3(a)	$8^{\frac{1}{3}} = 2$ or $8^5 = 32768$	A correct attempt to deal with the $\frac{1}{3}$ or the 5. $8^{\frac{1}{3}} = \sqrt[3]{8}$ or $8^{5} = 8 \times 8 \times 8 \times 8 \times 8$	M1
	$\left(8^{\frac{5}{3}}\right) 32$	Сао	A1
	A correct answer with no	working scores full marks	
	Alterr		
	$8^{\frac{5}{3}} = 8 \times 8^{\frac{2}{3}} = 8 \times 2^2 = N$ = 32	A1 (Deals with the $1/3$)	
			(2)
(b)	$\left(2x^{\frac{1}{2}}\right)^3 = 2^3 x^{\frac{3}{2}}$	One correct power either 2^3 or $x^{\frac{3}{2}}$. $\left(2x^{\frac{1}{2}}\right) \times \left(2x^{\frac{1}{2}}\right) \times \left(2x^{\frac{1}{2}}\right)$ on its own is not sufficient for this mark.	M1
	$\frac{8x^{\frac{3}{2}}}{4x^2} = 2x^{-\frac{1}{2}} \text{ or } \frac{2}{\sqrt{x}}$	M1: Divides coefficients of <i>x</i> and subtracts their powers of <i>x</i> . Dependent on the previous M1	dM1A1
		A1: Correct answer	
	Note that unless the power of <i>x</i> imp	blies that they have subtracted their	
	powers you would need to see evide		
	would score dM0 unless you see som for the po		
	Note that there is a misconception that		
			(3)
			[5]