Indices 2008-13

Question number	Scheme	Marks	
2.	(a) 2 (b) x^{9} seen, or (answer to (a) $)^{3}$ seen, or $\left(2 x^{3}\right)^{3}$ seen. $8 x^{9}$	B1 M1 A1	(1) (2) 3
	(b) M: Look for x^{9} first... if seen, this is M1. If not seen, look for (answer to (a) $)^{3}$, e.g. $2^{3} \ldots$ this would score M1 even if it does not subsequently become 8 . (Similarly for other answers to (a)). In $\left(2 x^{3}\right)^{3}$, the 2^{3} is implied, so this scores the M mark. Negative answers: (a) Allow -2 . Allow ± 2. Allow ' 2 or -2 '. (b) Allow $\pm 8 x^{9}$. Allow ' $8 x^{9}$ or $-8 x^{9}$ '. N.B. If part (a) is wrong, it is possible to 'restart' in part (b) and to score full marks in part (b).		

6663 Core Mathematics C1

 Mark Scheme| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 1
 (a)
 (b) | 5
 (± 5 is B0) $\begin{aligned} \frac{1}{(\text { their } 5)^{2}} & \text { or }\left(\frac{1}{\text { their } 5}\right)^{2} \\ & =\frac{1}{25} \text { or } 0.04 \quad\left(\pm \frac{1}{25} \text { is } \mathrm{A} 0\right) \end{aligned}$ | B1
 (1)
 M1
 A1
 (2)
 [3] |
| (b) | M1 follow through their value of 5. Must have reciprocal and square. 5^{-2} is not sufficient to score this mark, unless $\frac{1}{5^{2}}$ follows this.
 A negative introduced at any stage can score the M1 but not the A1, e.g. $125^{-2 / 3}=\left(-\frac{1}{5}\right)^{2}=\frac{1}{25} \quad$ scores M1 A0 $125^{-2 / 3}=-\left(\frac{1}{5}\right)^{2}=-\frac{1}{25} \quad \text { scores M1 A0. }$
 Correct answer with no working scores both marks.
 Alternative: $\frac{1}{\sqrt[3]{125^{2}}}$ or $\frac{1}{\left(125^{2}\right)^{1 / 3}}$ M1 (reciprocal and the correct number squared) $\begin{aligned} (& \left.=\frac{1}{\sqrt[3]{15625}}\right) \\ & =\frac{1}{25} \quad \text { A1 } \end{aligned}$ | |

J anuary 2011
Core Mathematics C1 6663
Mark Scheme

Question Number	Scheme	Marks
(a)	$16^{\frac{1}{4}}=2$ or $\frac{1}{16^{\frac{1}{4}}}$ or better $\left(16^{-\frac{1}{4}}=\right) \frac{1}{2} \text { or } 0.5 \quad \text { (ignore } \pm \text {) }$	M1 A1
(b)	$\left(2 x^{-\frac{1}{4}}\right)^{4}=2^{4} x^{-\frac{4}{4}}$ or $\frac{2^{4}}{x^{4}}$ or equivalent $x\left(2 x^{-\frac{1}{4}}\right)^{4}=2^{4}$ or 16	M1 A1 cao
	Notes	
(a) (b)	M1 for a correct statement dealing with the $\frac{1}{4}$ or the - power This may be awarded if 2 is seen or for reciprocal of their $16^{\frac{1}{4}}$ s.c $1 / 4$ is M1 A0, also 2^{-1} is M1 A0 $\pm \frac{1}{2}$ is not penalised so M1 A1 M1 for correct use of the power 4 on both the 2 and the x terms A1 for cancelling the x and simplifying to one of these two forms. Correct answers with no working get full marks	

J une 2011
 Core Mathematics C1 6663
 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$5 \quad$ (or ± 5)	B1 (1)
(b)	$25^{-\frac{3}{2}}=\frac{1}{25^{\frac{3}{2}}}$ or $25^{\frac{3}{2}}=125$ or better $\frac{1}{125} \text { or } 0.008 \quad\left(\text { or } \pm \frac{1}{125}\right)$	M1 A1 (2) 3
	Notes (a) Give B1 for 5 or ± 5 Anything else is B0 (including just -5) (b) M: Requires reciprocal OR $25^{\frac{3}{2}}=125$ Accept $\frac{1}{5^{3}}, \frac{1}{\sqrt{15625}}, \frac{1}{25 \times 5}, \frac{1}{25 \sqrt{25}}, \frac{1}{\sqrt{25^{3}}}$ for M1 Correct answer with no working (or notation errors in working) scores both marks M1A0 for $-\frac{1}{125}$ without $+\frac{1}{125}$	i.e. M1 A1

(a) M1: for a full correct interpretation of the fractional power. Note: $5 \times(32)^{3}$ is M0.

A1: for 8 only.
Note: Award M1A1 for writing down 8.
(b)

M1: For use of $\frac{1}{2}$ OR use of -1
Use of $\frac{1}{2}$: Candidate needs to demonstrate the they have rooted all three elements in their bracket.
Use of -1: Either Candidate has $\frac{1}{\text { Bracket }}$ or $\left(\frac{A x^{C}}{B}\right)$ becomes $\left(\frac{B}{A x^{C}}\right)$.
Allow M1 for...

- $\left(\frac{4}{25 x^{4}}\right)^{\frac{1}{2}}$ or $\left(\frac{5 x^{2}}{2}\right)^{-1}$ or $\frac{1}{\left(\frac{25 x^{4}}{4}\right)^{\frac{1}{2}}}$ or $\sqrt{\left(\frac{4}{25 x^{4}}\right)}$ or $\frac{1}{\sqrt{\left(\frac{25 x^{4}}{4}\right)}}$ or $\left(\frac{\frac{1}{25 x^{4}}}{\frac{1}{4}}\right)^{\frac{1}{2}}$ or $\frac{\frac{1}{5 x^{2}}}{\frac{1}{2}}$ or $\frac{\frac{1}{5} x^{-2}}{\frac{1}{2}}$
or $-\left(\frac{5 x^{2}}{2}\right)$ or $\left(\frac{-5 x^{-2}}{-2}\right)$ or $-\left(\frac{5 x^{-2}}{2}\right)$ or $\frac{5 x^{-2}}{2}$
- $\left(\frac{4}{25 x^{4}}\right)^{K}$ or $\left(\frac{5 x^{2}}{2}\right)^{C}$ where K, C are any powers including 1 .

A1: for either $\frac{2}{5 x^{2}}$ or $\frac{2}{5} x^{-2}$ or $0.4 x^{-2}$ or $\frac{0.4}{x^{2}}$.
Note: $\left(\sqrt{\left(\frac{25 x^{4}}{4}\right)}\right)^{-1}$ is not enough work by itself for the method mark.
Note: A final answer of $\frac{1}{\frac{5}{2} x^{2}}$ or $\frac{1}{2 \frac{1}{2} x^{2}}$ or $\frac{1}{2.5 x^{2}}$ is A0.
Note: Also allow $\pm \frac{2}{5 x^{2}}$ or $\pm \frac{2}{5} x^{-2}$ or $\pm 0.4 x^{-2}$ or $\pm \frac{0.4}{x^{2}}$ for A1.

Question Number	Scheme	Marks
2.	$\left(8^{2 x+3}=\left(2^{3}\right)^{2 x+3}\right)=2^{3(2 x+3)} \text { or } 2^{a x+b} \text { with } a=6 \text { or } b=9$ $=2^{6 x+9}$ or $=2^{3(2 x+3)}$ as final answer with no errors or $(y=) 6 x+9$ or $3(2 x+3)$	M1 A1 [2]
		2 marks
	Notes	
	M1: Uses $8=2^{3}$, and multiplies powers $3(2 x+3)$. Does not add powers. (Just $8=2^{3}$ or $8^{\frac{1}{3}}=2$ is M0) A1: Either $2^{6 x+9}$ or $=2^{3(2 x+3)}$ or $\quad(y=) 6 x+9$ or $3(2 x+3)$	
	Note: Examples: $2^{6 x+3}$ scores M1A0 $: 8^{2 x+3}=\left(2^{3}\right)^{2 x+3}=2^{3+2 x+3} \text { gets M0A0 }$ Special case: : $\quad=2^{6 x} 2^{9}$ without seeing as single power M1A0 Alternative method using logs: $8^{2 x+3}=2^{y} \Rightarrow(2 x+3) \log 8=y \log 2 \Rightarrow y=\frac{(2 x+3) \log 8}{\log 2}$ So $(y=) 6 x+9$ or $3(2 x+3)$	M1 A1 [2]

Question Number	Scheme		Marks
3(a)	$8^{\frac{1}{3}}=2$ or $8^{5}=32768$	A correct attempt to deal with the $\frac{1}{3}$ or the 5 . $8^{\frac{1}{3}}=\sqrt[3]{8} \text { or } 8^{5}=8 \times 8 \times 8 \times 8 \times 8$	M1
	$\left(8^{\frac{5}{3}}=\right) 32$	Cao	A1
	A correct answer with no working scores full marks		
	Alternative$\begin{aligned} 8^{\frac{5}{3}}=8 \times 8^{\frac{2}{3}}=8 \times 2^{2} & =\text { M1 (Deals with the } 1 / 3) \\ & =32 \text { A1 } \end{aligned}$		
			(2)
(b)	$\left(2 x^{\frac{1}{2}}\right)^{3}=2^{3} x^{\frac{3}{2}}$	One correct power either 2^{3} or $x^{\frac{3}{2}}$. $\left(2 x^{\frac{1}{2}}\right) \times\left(2 x^{\frac{1}{2}}\right) \times\left(2 x^{\frac{1}{2}}\right)$ on its own is not sufficient for this mark.	M1
	$\frac{8 x^{\frac{3}{2}}}{4 x^{2}}=2 x^{-\frac{1}{2}} \text { or } \frac{2}{\sqrt{x}}$	M1: Divides coefficients of x and subtracts their powers of x. Dependent on the previous M1	dM1A1
		A1: Correct answer	
	Note that unless the power of x implies that they have subtracted their powers you would need to see evidence of subtraction. E.g. $\frac{8 x^{\frac{3}{2}}}{4 x^{2}}=2 x^{\frac{1}{2}}$ would score dM0 unless you see some evidence that $3 / 2-2$ was intended for the power of x.		
	Note that there is a misconception that $\frac{\left(2 x^{\frac{1}{2}}\right)^{3}}{4 x^{2}}=\left(\frac{2 x^{\frac{1}{2}}}{4 x^{2}}\right)^{3}$ - this scores $0 / 3$		
			(3)
			[5]

