1. (a)

$$
\begin{aligned}
& (\downarrow) 0.4 g-T=0.4 a \\
& (\uparrow) T-0.3 g=0.3 a \\
& \quad \text { solving for } T \\
& \quad T=3.36 \text { or } 3.4 \text { or } 12 \mathrm{~g} / 35(\mathrm{~N})
\end{aligned}
$$

M1 A1
M1 A1
(b)

$$
\begin{aligned}
0.4 g-0.3 g & =0.7 a \\
a & =1.4 \mathrm{~m} \mathrm{~s}^{-2}, g / 7
\end{aligned}
$$

(c) $(\uparrow) v=u+a t$
$v=0.5 \times 1.4$
$=0.7$
$(\uparrow) s=u t+\frac{1}{2} a t^{2}$
$s=0.5 \times 1.4 \times 0.5^{2}$
$=0.175$
$(\downarrow) s=u t+\frac{1}{2} a t^{2}$
$1.175=-0.7 t+4.9 t^{2}$
M1
A1 ft on $a$
$4.9 t^{2}-0.7 t-1.175=0$
$t=\frac{0.7 \pm \sqrt{0.7^{2}+19.6 \times 1.175}}{9.8}$
DM1 A1 cao
$=0.5663$..or $-\ldots$
Ans 0.57 or 0.566 s
A1 cao 9
2.
(a) N2L A:

$$
5 m g-T=5 m \times \frac{1}{4} g
$$

$$
T=\frac{15}{4} m g *
$$

cso
(b) $\mathrm{N} 2 \mathrm{~L} \quad \mathrm{~B}: \quad T-k m g=k m \times \frac{1}{4} g$

$$
k=3
$$

$$
\text { A1 } 3
$$

(c) The tensions in the two parts of the string are the same B1 1
(d) Distance of A above ground $s_{1}=\frac{1}{2} \times \frac{1}{4} g \times 1.2^{2}=0.18 g(\approx 1.764) \quad$ M1 A1 Speed on reaching ground $\quad v=\frac{1}{4} g \times 1.2=0.3 g(\approx 2.94) \quad$ M1 A1 For $B$ under gravity $\quad(0.3 g)^{2}=2 g s_{2} \Rightarrow s_{2}=\frac{(0.3)^{2}}{2} g=(\approx 0.441) \quad$ M1 A1

$$
S=2 s_{1}+s_{2}=3.969 \approx 4.0 \quad(\mathrm{~m}) \quad \text { A1 } 7
$$

3. (a) For whole system: $1200-400-200=1000 a$

$$
a=0.6 \mathrm{~m} \mathrm{~s}^{-2}
$$

(b) For trailer: $T-200=200 \times 0.6$

$$
T=320 \mathrm{~N}
$$

## OR:

OR: $\quad$ For car: $1200-400-T=800 \times 0.6$

$$
T=320 \mathrm{~N}
$$

(N.B. For both: $400+200+F=1000 f$ )
(c) For trailer: $200+100=200 f$ or $-200 f$

$$
f=1.5 \mathrm{~m} \mathrm{~s}^{-2}(-1.5)
$$

$\begin{array}{rrr}f=1.5 \mathrm{~m} \mathrm{~s}^{-2}(-1.5) & \text { A1 } \\ \text { For car: } 400+F-100=800 f \text { or }-800 f & \text { M1 A2 } & \\ F=900 & \text { A1 } & 7\end{array}$

$$
F=900
$$

A1 3
6. (a) $s=u t+\frac{1}{2} a t^{2} \Rightarrow 3.15=\frac{1}{2} a \times \frac{9}{4}$

$$
a=2.8\left(\mathrm{~m} \mathrm{~s}^{-2}\right)^{*}
$$

(b) N2L for $P: 0.5 g-T=0.5 \times 2.8$ $T=3.5(\mathrm{~N})$
(c) N2L for $Q: T-m g=2.8 m$
3.55
$m=\frac{3.5}{12.6}=\frac{5}{18} *$
(d) The acceleration of $P$ is equal to the acceleration of $Q$.
(e) $\quad v=u+a t \Rightarrow v=2.8 \times 1.5$

$$
\left(\text { or } v^{2}=u^{2}+2 a s \Rightarrow v^{2}=2 \times 2.8 \times 3.15\right)
$$

$$
\left(v^{2}=17.64, v=4.2\right)
$$

$$
v=u+a t \Rightarrow 4.2=-4.2+9.8 t \quad \text { DM1A1 }
$$

$$
t=\frac{6}{7}, 0.86,0.857(\mathrm{~s})
$$

DM1A1 6
8. (a) Car + trailer: $2100 a=2380-280-630$
$=1470 \Rightarrow a=0.7 \mathrm{~m} \mathrm{~s}^{-2}$
M1 for a complete (potential) valid method to get a
(b) e.g. trailer $700 \times 0.7=T-280$
$\Rightarrow T=770 \mathrm{~N}$
If consider car: then get $1400 a=2380-630-T$.
Allow M1 A1 for equn of motion for car or trailer wherever seen (e.g. in (a)).
So if consider two separately in (a), can get M1 A1 from (b) for one equation; then M1 Al from (a) for second equation, and then Al [(a)] for a and Al [(b)] for $T$.
In equations of motion, M1 requires no missing or extra terms and dimensionally correct (e.g. extra force, or missing mass, is M0).
If unclear which body is being considered, assume that the body is determined by the mass used. Hence if '1400a' used, assume it is the car and mark forces etc accordingly.
But allow e.g. 630/280 confused as an A error.
(c) Car: $1400 a^{\prime}=2380-630$
$\Rightarrow a^{\prime}=1.25 \mathrm{~ms}^{-2}$
distance $=12 \times 4+1 / 2 \times 1.25 \times 4^{2}$
$=58 \mathrm{~m}$
A1 6
Must be finding a new acceleration here. (If they get 1.25 erroneously in (a), and then simply assume it is the same acceln here, it is M0).
(d) Same acceleration for car and trailer B1 1 Allow o.e. but you must be convinced they are saying that it is same acceleration for both bodies. E.g. 'acceleration constant' on its own is B0

Ignore extras, but 'acceleration and tension same at $A$ and $B$ ' is B0
12. (a) $3 \mathrm{~kg}: 3 g-T=3 \times \frac{3 g}{7} \quad$ M1 A1
$\Rightarrow T=\underline{\frac{12 g}{7}} \underline{\text { or } 16.8 \mathrm{~N} \text { or } 17 \mathrm{~N}} \quad$ A1 3
(b) $m \mathrm{~kg}: T-m g=m \cdot \frac{3 g}{7}$ M1 A1

$$
\begin{array}{lc}
\left.\frac{12 g}{7}=m g+\frac{3 m g}{7} \text { (Sub for } T \text { and solve }\right) & \text { M1 } \\
\Rightarrow m=\underline{1.2} & \text { A1 } 4
\end{array}
$$

16. (a) Car + truck: $2000 a=2400-600-400$
(b) Car only: T-400 = $800 \times 0.7$
[or truck only: $2400-\mathrm{T}-600=1200 \times 0.7$ ]
$\mathrm{T}=960 \mathrm{~N}$
(c) New acceleration of truck $a^{\prime}$ given by $1200 a^{\prime}=2400-600$ M1
$a^{\prime}=2400-600=1.5 \mathrm{~m} \mathrm{~s}^{-1}$ A1
Time to reach $28 \mathrm{~m} \mathrm{~s}^{-1}=\frac{28-20}{1.5}=5.33 \mathrm{~s}$ M1 A1

Time to reach $28 \mathrm{~m} \mathrm{~s}^{-1}$ if rope had not broken $=\frac{28-20}{0.7}=11.43 \mathrm{~s} \quad$ M1 A1 Difference $=6.1 \mathrm{~s} \approx \underline{6 \mathrm{~s}}\left(^{*}\right)$

A1 7

