Mark Scheme (Results) Summer 2008

GCE Mathematics (6663/01)

GCE

June 2008

6663 Core Mathematics C1

Mark Scheme

Question number	Scheme Marks
1.	$2 x+\frac{5}{3} x^{3}+c$ M1A1A1
	M1 for an attempt to integrate $x^{n} \rightarrow x^{n+1}$. Can be given if $+c$ is only correct term. $1^{\text {st }}$ A1 for $\frac{5}{3} x^{3}$ or $2 x+c$. Accept $1 \frac{2}{3}$ for $\frac{5}{3}$. Do not accept $\frac{2 x}{1}$ or $2 x^{1}$ as final answer $2^{\text {nd }}$ A1 for as printed (no extra or omitted terms). Accept $1 \frac{2}{3}$ or $1 . \dot{6}$ for $\frac{5}{3}$ but not 1.6 or 1.67 etc Give marks for the first time correct answers are seen e.g. $\frac{5}{3}$ that later becomes 1.67 , the 1.67 is treated as ISW NB M1A0A1 is not possible

\begin{tabular}{|c|c|}
\hline Question number \& Scheme \({ }^{\text {arks }}\) \\
\hline 9. (a)
(b)
(c) \& \begin{tabular}{l}
\(\left[\frac{d y}{d x}=\right] 3 k x^{2}-2 x+1\) \\
Gradient of line is \(\frac{7}{2}\) \\
When \(x=-\frac{1}{2}: \quad 3 k \times\left(\frac{1}{4}\right)-2 \times\left(-\frac{1}{2}\right)+1,=\frac{7}{2}\) \\
\(\frac{3 k}{4}=\frac{3}{2} \Rightarrow k=2\) \\
\(x=-\frac{1}{2} \Rightarrow y=k \times\left(-\frac{1}{8}\right)-\left(\frac{1}{4}\right)-\frac{1}{2}-5,=-6\) \\
M1A1
\end{tabular} \\
\hline (a)
(b)

(c) \& | M1 for attempting to differentiate $x^{n} \rightarrow x^{n-1}$ (or -5 going to 0 will do) |
| :--- |
| A1 all correct. A " $+c$ " scores A0 |
| B1 for $m=\frac{7}{2}$. Rearranging the line into $y=\frac{7}{2} x+c$ does not score this mark until you are sure they are using $\frac{7}{2}$ as the gradient of the line or state $m=\frac{7}{2}$ |
| $1^{\text {st }}$ M1 for substituting $x=-\frac{1}{2}$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$, some correct substitution seen $2^{\text {nd }} \mathrm{M} 1$ for forming a suitable equation in k and attempting to solve leading to $k=\ldots$ |
| Equation must use their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and their gradient of line. Assuming the gradient is 0 or 7 scores |
| M0 unless they have clearly stated that this is the gradient of the line. |
| A1 \quad for $k=2$ |
| M1 for attempting to substitute their k (however it was found or can still be a letter) and $x=-\frac{1}{2}$ into y (some correct substitution) |
| A1 for -6 |

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Question number \& Scheme Marks

\hline 11. (a)

(b) \& $$
\begin{align*}
& \left(x^{2}+3\right)^{2}=x^{4}+3 x^{2}+3 x^{2}+3^{2} \\
& \frac{\left(x^{2}+3\right)^{2}}{x^{2}}=\frac{x^{4}+6 x^{2}+9}{x^{2}}=x^{2}+6+9 x^{-2} \tag{*}\\
& y=\frac{x^{3}}{3}+6 x+\frac{9}{-1} x^{-1}(+c) \tag{2}\\
& 20=\frac{27}{3}+6 \times 3-\frac{9}{3}+c \\
& c=-4 \\
& {[y=] \frac{x^{3}}{3}+6 x-9 x^{-1}-4}
\end{align*}
$$

\hline (a)

(b) \& | M1 for attempting to expand $\left(x^{2}+3\right)^{2}$ and having at least 3(out of the 4) correct terms. |
| :--- |
| A1 at least this should be seen and no incorrect working seen. |
| If they never write $\frac{9}{x^{2}}$ as $9 x^{-2}$ they score A0. |
| $1^{\text {st }}$ M1 for some correct integration, one correct x term as printed or better |
| Trying $\frac{\int u}{\int v}$ loses the first M mark but could pick up the second. |
| $1^{\text {st }}$ A1 for two correct x terms, un-simplified, as printed or better |
| $2^{\text {nd }}$ A1 for a fully correct expression. Terms need not be simplified and $+c$ is not required. |
| No $+c$ loses the next 3 marks |
| $2^{\text {nd }}$ M1 for using $x=3$ and $y=20$ in their expression for $\mathrm{f}(x)\left[\neq \frac{\mathrm{d} y}{\mathrm{~d} x}\right]$ to form a linear equation for c |
| $3^{\text {rd }} \mathrm{A} 1$ for $c=-4$ |
| $4^{\text {th }}$ A1ft for an expression for y with simplified x terms: $\frac{9}{x}$ for $9 x^{-1}$ is OK . |
| Condone missing " $y=$ " |
| Follow through their numerical value of c only. |

\hline
\end{tabular}

Mark Scheme (Results) Summer 2008

GCE Mathematics (6664/01)

GCE

June 2008
 Core Mathematics C2 Mark Scheme

Question number	Scheme	Marks
8.	(a) $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 8+2 x-3 x^{2} \quad\left(\mathrm{M}: x^{n} \rightarrow x^{n-1}\right.$ for one of the terms, not just $\left.10 \rightarrow 0\right)$ $3 x^{2}-2 x-8=0 \quad(3 x+4)(x-2)=0 \quad x=2 \quad$ (Ignore other solution) $\left({ }^{*}\right)$ (b) Area of triangle $=\frac{1}{2} \times 2 \times 22 \quad(M$: Correct method to find area of triangle $)$ (Area $=22$ with no working is acceptable) $\begin{array}{\|lcc\|}\int 10+8 x+x^{2}-x^{3} \mathrm{~d} x=10 x+\frac{8 x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4} & \left(\mathrm{M}: x^{n} \rightarrow x^{n+1} \text { for one of the terms }\right) \\$ Only one term correct: M1 A0 A0 Integrating the gradient function 2 or 3 terms correct: M1 A1 A0 loses this M mark. \end{array}$\left[10 x+\frac{8 x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{2}=\ldots \ldots$ (Substitute limit 2 into a 'changed function') $\begin{equation*} \left(=20+16+\frac{8}{3}-4\right) \tag{8} \end{equation*}$ (This M can be awarded even if the other limit is wrong) Area of $R=34 \frac{2}{3}-22=\frac{38}{3}\left(=12 \frac{2}{3}\right)($ Or 12.6) M: Dependent on use of calculus in (b) and correct overall 'strategy': subtract either way round. A: Must be exact, not 12.67 or similar. A negative area at the end, even if subsequently made positive, loses the A mark.	M1 A1 A1cso (3) M1 A1 M1 A1 A1 M1 M1 A1
	(a) The final mark may also be scored by verifying that $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ at $x=2$. (b) Alternative: Eqn. of line $y=11 x . \quad$ (Marks dependent on subsequent use in integration) (M1: Correct method to find equation of line. A1: Simplified form $y=11 x$) $\begin{aligned} & \int 10+k x+x^{2}-x^{3} \mathrm{~d} x=10 x+\frac{k x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4} \quad(k \text { perhaps }-3) \\ & {\left[10 x+\frac{k x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{2}=\ldots \ldots . \quad \quad \text { (Substitute limit } 2 \text { into a 'changed function') }} \\ & \text { Area of } R=\left[10 x-\frac{3 x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{2}=20-6+\frac{8}{3}-4=\frac{38}{3} \quad\left(=12 \frac{2}{3}\right) \\ & \text { Final M1 for } \int(\text { curve })-\int(\text { line }) \text { or } \int(\text { line })-\int(\text { curve }) . \end{aligned}$	M1 A1 M1 A1 A1 M1 M1 A1

