Mark Scheme (Results) Summer 2008

GCE Mathematics (6663/01)

GCE

June 2008 6663 Core Mathematics C1 Mark Scheme

Question number	Scheme	Marks	
1.	$2x + \frac{5}{3}x^3 + c$	M1A1A1	
			(3) 3
	M1 for an attempt to integrate $x^n \to x^{n+1}$. Can be given if $+c$ is only correct term. 1 st A1 for $\frac{5}{3}x^3$ or $2x+c$. Accept $1\frac{2}{3}$ for $\frac{5}{3}$. Do <u>not</u> accept $\frac{2x}{1}$ or $2x^1$ as final answer		
	2^{nd} A1 for as printed (no extra or omitted terms). Accept $1\frac{2}{3}$ or 1.6 for $\frac{5}{3}$ but not	1.6 or 1.67 etc	2
	Give marks for the first time correct answers are seen e.g. $\frac{5}{3}$ that later becomes 1.0	67, the 1.67 is	
	treated as ISW		
	NB M1A0A1 is not possible		

Question number	Scheme	Marks	
4. (a)	$[f'(x) =] 3 + 3x^2$	M1A1	(2)
(b)	$3+3x^2 = 15$ and start to try and simplify $x^2 = k \rightarrow x = \sqrt{k}$ (ignore <u>+</u>)	M1 M1	
	x = 2 (ignore $x = -2$)	A1	(3) 5
(a)	M1 for attempting to differentiate $x^n \to x^{n-1}$. Just one term will do. A poor integration attempt that gives $3x^2 +$ (or similar) scores M0A0 A1 for a fully correct expression. Must be 3 not $3x^0$. If there is a + <i>c</i> they sco	re A0.	
(b)	1 st M1 for forming a correct equation and trying to rearrange their $f'(x) = 15$ e.g. e.g. $3x^2 = 15 - 3$ or $1 + x^2 = 5$ or even $3 + 3x^2 \rightarrow 3x^2 = \frac{15}{3}$ or $3x^{-1} + 3x^2 = 15 \rightarrow 3x^{-1}$ (i.e. algebra can be awful as long as they try to collect terms in their $f'(x) = 15$ equations of the terms in terms in the terms in terms in terms in the terms in terms in terms in the terms in term	6x = 15	
	2 nd M1 this is dependent upon their f'(x) being of the form $a + bx^2$ and attempting to solve $a + bx^2 = 15$ For correct processing leading to $x =$ Can condone arithmetic slips but processes should be correct so e.g. $3 + 3x^2 = 15 \rightarrow 3x^2 = \frac{15}{3} \rightarrow x = \frac{\sqrt{15}}{3}$ scores M1M0A0 $3 + 3x^2 = 15 \rightarrow 3x^2 = 12 \rightarrow x^2 = 9 \rightarrow x = 3$ scores M1M0A0 $3 + 3x^2 = 15 \rightarrow 3x^2 = 12 \rightarrow 3x = \sqrt{12} \rightarrow x = \frac{\sqrt{12}}{3}$ scores M1M0A0		

Question number	Scheme	Marks
9. (a)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = 3kx^2 - 2x + 1$	M1A1 (2)
(b)	Gradient of line is $\frac{7}{2}$	B1
	When $x = -\frac{1}{2}$: $3k \times (\frac{1}{4}) - 2 \times (-\frac{1}{2}) + 1, = \frac{7}{2}$	M1, M1
	$\frac{3k}{4} = \frac{3}{2} \Longrightarrow k = 2$ $x = -\frac{1}{2} \Longrightarrow y = k \times \left(-\frac{1}{8}\right) - \left(\frac{1}{4}\right) - \frac{1}{2} - 5, = -6$	A1 (4)
(c)	$x = -\frac{1}{2} \Longrightarrow y = k \times \left(-\frac{1}{8}\right) - \left(\frac{1}{4}\right) - \frac{1}{2} - 5, = -6$	M1, A1 (2)
		8
(a)	M1 for attempting to differentiate $x^n \to x^{n-1}$ (or -5 going to 0 will do)	
	A1 all correct. A " $+ c$ " scores A0	
(b)	B1 for $m = \frac{7}{2}$. Rearranging the line into $y = \frac{7}{2}x + c$ does not score this mark u	until vou are sure
	2 2 2	<i></i>
	they are using $\frac{7}{2}$ as the gradient of the line or state $m = \frac{7}{2}$	
	1 st M1 for substituting $x = -\frac{1}{2}$ into their $\frac{dy}{dx}$, some correct substitution seen	
	2^{nd} M1 for forming a suitable equation in k and attempting to solve leading to $k =$	
	Equation must use their $\frac{dy}{dx}$ and their gradient of line. Assuming the gradient	ent is 0 or 7 scores
	M0 unless they have clearly stated that this is the gradient of the line.	
	A1 for $k = 2$	
(c)	M1 for attempting to substitute their k (however it was found or can still be a le	etter) and
	$x = -\frac{1}{2}$ into y (some correct substitution)	
	-	
	A1 for - 6	

Question number	Scheme	Marks	
11. (a)	$\left(x^{2}+3\right)^{2} = x^{4}+3x^{2}+3x^{2}+3^{2}$	M1	
	$\frac{\left(x^2+3\right)^2}{x^2} = \frac{x^4+6x^2+9}{x^2} = x^2+6+9x^{-2} \qquad (*)$	Alcso	(2)
(b)	$y = \frac{x^3}{3} + 6x + \frac{9}{-1}x^{-1}(+c)$	M1A1A1	
	$20 = \frac{27}{3} + 6 \times 3 - \frac{9}{3} + c$	M1	
	c = -4	A1	
	c = -4 [y =] $\frac{x^3}{3} + 6x - 9x^{-1} - 4$	A1ft	(6)
	3		8
(a)	M1 for attempting to expand $(x^2 + 3)^2$ and having at least 3(out of the 4) correct	ct terms.	
	A1 at least this should be seen and no incorrect working seen.		
	If they never write $\frac{9}{x^2}$ as $9x^{-2}$ they score A0.		
(b)	1 st M1 for some correct integration, one correct <i>x</i> term as printed or better Trying $\frac{\int u}{\int v}$ loses the first M mark but could pick up the second.		
	1^{st} A1 for two correct <i>x</i> terms, un-simplified, as printed or better 2^{nd} A1 for a fully correct expression. Terms need not be simplified and + <i>c</i> is not r No + <i>c</i> loses the next 3 marks	required.	
	2^{nd} M1 for using $x = 3$ and $y = 20$ in their expression for $f(x) \left[\neq \frac{dy}{dx} \right]$ to form a line	ear equation fo	or c
	3^{rd} A1 for $c = -4$		
	4 th A1ft for an expression for y with simplified x terms: $\frac{9}{x}$ for $9x^{-1}$ is OK.		
	Condone missing " $y =$ " Follow through their numerical value of <i>c</i> only.		

Mark Scheme (Results) Summer 2008

GCE Mathematics (6664/01)

GCE

June 2008 Core Mathematics C2 Mark Scheme

Question number	Scheme	Marks	
8.	(a) $\left(\frac{dy}{dx}\right) = 8 + 2x - 3x^2$ (M: $x^n \to x^{n-1}$ for one of the terms, <u>not</u> just $10 \to 0$)	M1 A1	
	$3x^2 - 2x - 8 = 0$ $(3x + 4)(x - 2) = 0$ $x = 2$ (Ignore other solution) (*)	Alcso	(3)
	(b) Area of triangle = $\frac{1}{2} \times 2 \times 22$ (M: Correct method to find area of triangle)	M1 A1	
	(Area = 22 with no working is acceptable)		
	$\int 10 + 8x + x^2 - x^3 dx = 10x + \frac{8x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} (M: x^n \to x^{n+1} \text{ for one of the terms})$	M1 A1 A1	
	Only one term correct:M1 A0 A0Integrating the gradient function2 or 3 terms correct:M1 A1 A0loses this M mark.		
	$\left[10x + \frac{8x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}\right]_0^2 = \dots $ (Substitute limit 2 into a 'changed function')	M1	
	$\left(=20+16+\frac{8}{3}-4\right)$ (This M can be awarded even if the other limit is wrong)		
	Area of $R = 34\frac{2}{3} - 22 = \frac{38}{3} \left(= 12\frac{2}{3} \right)$ (Or 12.6)	M1 A1	(8)
	M: Dependent on use of calculus in (b) and correct overall 'strategy':		
	subtract either way round. A: Must be <u>exact</u> , not 12.67 or similar.		
	A negative area at the end, even if subsequently made positive, loses the A mark.		
	du		11
	(a) The final mark may also be scored by <u>verifying</u> that $\frac{dy}{dx} = 0$ at $x = 2$.		
	(b) <u>Alternative</u> : Eqn. of line $y = 11x$. (Marks dependent on subsequent use in integration) (M1: Correct method to find equation of line. A1: Simplified form $y = 11x$)	M1 A1	
	$\int 10 + kx + x^2 - x^3 dx = 10x + \frac{kx^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \qquad (k \text{ perhaps } -3)$	M1 A1 A1	
	$\left[10x + \frac{kx^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}\right]_0^2 = \dots $ (Substitute limit 2 into a 'changed function')	M1	
	Area of $R = \left[10x - \frac{3x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}\right]_0^2 = 20 - 6 + \frac{8}{3} - 4 = \frac{38}{3}$ $\left(=12\frac{2}{3}\right)$	M1 A1	(8)
	Final M1 for $\int (\text{curve}) - \int (\text{line})$ or $\int (\text{line}) - \int (\text{curve})$.		