Normal Distribution Mark Scheme 2011-13 | Question
Number | Scheme | Marks | | |--------------------|---|---------------------------|--| | 8. | | | | | (a) | $P(X > 168) = P(Z > \frac{168 - 160}{5})$ | M1 | | | | = P(Z > 1.6) | A1 | | | | = 0.0548 awrt 0.0548 | A1 | | | | - 0.0540 awit 0.0540 | (3) | | | (b) | $P(X < w) = P\left(Z < \frac{w - 160}{5}\right)$ | | | | | | | | | | $\frac{w-160}{5} = -2.3263$ | M1 B1 | | | | | A1 | | | | w = 148.37 awrt 148 | (3) | | | (c) | 160 – 11 | M1 | | | | $\frac{160-\mu}{\sigma} = 2.3263$ | B1 | | | | | D1 | | | | $\frac{152-\mu}{\sigma} = -1.2816$ | B1 | | | | $160 - \mu = 2.3263\sigma$ | | | | | $152 - \mu = -1.2816\sigma$ | | | | | $8 = 3.6079 \sigma$ | M1 | | | | $\sigma = 2.21$ awrt 2.22 | A1 | | | | $\mu = 154.84$ awrt 155 | A1 (6) | | | | N T . | [12] | | | (2) | <u>Notes</u> | | | | (a) | M1 for an attempt to standardize 168 with 160 and 5 i.e. $\pm \left(\frac{168-160}{5}\right)$ | or implied by 1.6 | | | | 1 st A1 for $P(Z > 1.6)$ or $P(Z < -1.6)$ ie $z = 1.6$ and a correct inequality or 1.6 diagram | on a shaded | | | | Correct answer to (a) implies all 3 marks | | | | (b) | M1 for attempting $\pm \left(\frac{w-160}{5}\right)$ = recognizable z value (z > 1) | | | | | B1 for $z = \pm 2.3263$ or better. Should be $z = \dots$ or implied so: $1 - 2.3263 = \frac{w}{100}$ | $\frac{y-160}{5}$ is M0B0 | | | | A1 for awrt 148. This may be scored for other z values so M1B0A1 is poss | sible | | | | For awrt 148 only with no working seen award M1B0A1 | | | | (c) | M1 for attempting to standardize 160 or 152 with μ and σ (allow \pm) and e | quate to z value | | | | (z >1) | | | | | 1^{st} B1 for awrt \pm 2.33 or \pm 2.32 seen 2^{nd} B1 for awrt \pm 1.28 seen | | | | | 2^{nd} M1 for attempt to solve their two linear equations in μ and σ leading to | equation in inst | | | | one variable | | | | | one variable 1^{st} A1 for $\sigma = \text{awrt } 2.22$. Award when 1^{st} seen | | | | | 2^{nd} A1 for μ = awrt 155. Correct answer only for part (c) can score all 6 marks. | | | | | NB σ = 2.21 commonly comes from z = 2.34 and usually scores M1B0B1M1A0A1 | | | | | The A marks in (c) require both M marks to have been earn | | | | Question
Number | Scheme | Marks | | |--------------------|---|----------|--| | | | | | | 2. (a) | awrt ± 1.40 | B1 | | | | $\frac{23-\mu}{5}$ = "1.40" (o.e) | M1A1ft | | | | $\frac{\mu = 16}{16.0)}$ (or awrt | A1 | | | | | (4) | | | (b) | 0.4192 | (1)
5 | | | | Notes | | | | (a) | B1 for awrt \pm 1.40 or better seen anywhere. Condone 1.4 instead of 1.40 M1 for attempting to standardise with 23 and 5 and μ , accept \pm e.g. $\frac{23-\mu}{25} = 1.40$ can score B1M0 (since using 25 not 5 for standardising) $\frac{23-\mu}{5} = 0.9192$ can score B0M1 (since have correct standardisation) | | | | | Can accept equivalent equations e.g. $23 - \mu = 5 \times "1.40"$ 1st A1ft for standardised expression = to a z value (z > 1). Signs must be compatible. Follow through their z e.g. $\frac{23 - \mu}{5}$ = their z where $z > 1$ or $\frac{\mu - 23}{5}$ = their z where $z < -1$ 2nd A1 for 16 or awrt 16.0 if they are using a more accurate z | | | | | Correct answer only scores 4/4 but if any working is seen apply scheme | | | | (b) | B1 for 0.4192 (but accept 3sf accuracy if 0.9192 – 0.5 is seen) | | | | Question | Scheme | Marks | | |------------|---|----------|--| | Number | Scheme | IVIAI KS | | | 4. (a) | $(z = \pm) \frac{15 - 16.12}{1.6} (= -0.70)$ $P(Z < -0.70) = 1 - 0.7580$ $= 0.2420$ (count 0.242) | M1 | | | | P(Z < -0.70) = 1 - 0.7580 | M1 | | | | = 0.2420 (awrt 0.242) | A1 | | | | | (3) | | | | | | | | (b) | [P(T < t)=0.30 implies] $z = \frac{t-16.12}{1.6} = -0.5244$ | M1 A1 | | | | $\frac{t - 16.12}{1.6} = -0.5244 \implies t = 16.12 - 1.6 \times "0.5244"$ | M1 | | | | $t = \text{awrt } \underline{15.28} \text{ (allow awrt } 15.28/9)$ | A1 | | | | | (4) | | | | Notes | 7 | | | | Notes | | | | (a) | Allow slips e.g. 16.2 for 16.12 for 1^{st} M1 in (a) and (b) 1^{st} M1 for standardising expression with 15, 16.12 and 1.6 - allow \pm 2 nd M1 for 1 - a probability (> 0.5) from tables or calculator based on their standardised | | | | | value | | | | | Correct answer only scores 3/3 | | | | (b) | In part (b) they can use any letter or symbol instead of 1^{st} M1 for standardising with t (o.e.), 16.12 and 1.6, allow \pm , and setting value | | | | | 1^{st} A1 for an equation with $z = \pm 0.5244$ or better | | | | | <u> </u> | | | | | e.g. $\frac{t-16.12}{1.6} = \pm 0.52$ (or 0.525) scores M1 (but A0) | | | | | 2^{nd} M1 for solving their linear equation as far as $t = a \pm b \times 1.6$. Not dependent on 1^{st} M1 | | | | | e.g. solving $\frac{t-16.12}{1.6} = 0.3$ to give $t = 16.12 + 1.6 \times 0.3$ scores this | s M1 | | | | Allow $\frac{t-16.12}{1.6^2} = 0.3$ to give $t = 16.12 + 1.6^2 \times 0.3$ to score M1 to | 00 | | | | 2 nd A1 dependent on both M marks. Allow awrt 15.28 or awrt 15.29 | | | | | Condone awrt 15.3 if a correct expression for $t =$ is seen. | | | | | Answers with no working: | | | | | 15.28 is M1A1M1A1, 15.29 is M1A0M1A1, 15.3 is M1A0M1A0 | | | | | | | | | | | | | | Question
Number | Scheme | Marks | |--------------------|---|-----------| | 7 (a) | $P(W < 224) = P\left(z < \frac{224 - 232}{5}\right)$ $= P(z < -1.6)$ | M1 | | | = 1 - 0.9452 | M1 | | | = 0.0548 awrt 0.0548 | A1 | | (b) | 0.5 - 0.2 = 0.3 0.3 or 0.7 seen | (3)
M1 | | | $\frac{w - 232}{5} = 0.5244 $ 0.5244 seen | B1; M1 | | | w = 234.622 awrt 235 | A1 | | (c) | $0.2 \times (1 - 0.2)$ | (4)
M1 | | (C) | $2 \times 0.8 \times (1 - 0.8) = 0.32$ | M1 A1 | | | | (3) | | NOTES | | Total 10 | | (a) | M1 for standardising with 232 and 5. (i.e. not 5^2 or $\sqrt{5}$). Accept $\pm \frac{w-232}{5}$. | | | | M1 for finding (1- a probability > 0.5) | | | (b) | A1 awrt 0.0548
M1 Can be implied by use of ± 0.5244 or $\pm (0.52$ to $0.53)$
B1 for ± 0.5244 only.
Second M1 standardise with 232 and 5 and equate to z value of $(0.52$ to $0.53)$ or $(0.84$ to $0.85)$
1 - z used award second M0. | | | | Require consistent signs i.e. $\frac{232 - w}{5} = -0.5244$ or negative z value for M1. | | | | A1 dependent upon second M mark for awrt 235 but see note below. Common errors involving probabilities and not z values: $P(Z<0.2) = 0.5793$ used instead of z value gives awrt 235 but award M0B0M0A0 $P(Z<0.8) = 0.7881$ used instead of z value award M0B0M0A0. M1B0M0A0 for 0.6179, M1B0M0A0 for 0.7580 | | | (c) | M1 for 0.16 seen M1 for $2 \times p(1-p)$, A1 0.32 correct answer only | | | Question | Scheme | Marks | | |------------|---|----------|--| | 6. (a) | $\left[z=\right] \pm \left(\frac{150-162}{7.5}\right)$ | M1 | | | | [z=]-1.6 | A1 | | | | [P(F > 150) = P(Z > -1.6) =] = 0.9452(0071) awrt <u>0.945</u> | A1 (3) | | | (I-) | | D1 | | | (b) | $z = \pm 0.2533 \text{ (or better seen)}$ | B1 | | | | $(\pm)\frac{s-162}{7.5} = 0.2533(47)$ $s = 163.9$ awrt <u>164</u> | M1 | | | | s = 163.9 awrt <u>164</u> | A1 (3) | | | (c) | $z = \pm 1.2816$ (or better seen) | B1 | | | | $\frac{162 - \mu}{9} = -1.2815515$ | M1
A1 | | | | $\mu = 173.533$ awrt <u>174</u> | A1 (4) | | | | | [10] | | | | Notes | [10] | | | (a) | M1 for attempting to standardise with 150, 162 and 7.5. Accept ± | | | | | Allow use of symmetry and therefore 174 instead of 150 1 st A1 for -1.6 seen. Allow 1.6 seen if 174 used or awrt 0.945 is seen. Sight of 0.945(2) is A1 2 nd A1 for awrt 0.945 Do not apply ISW, if 0.9452 is followed by 1 – 0.9452 then award A0 Correct answer only 3/3 | | | | (b) | B1 for $(z =) \pm 0.2533$ (or better) seen. | | | | | Giving $z = \pm 0.25$ or ± 0.253 scores B0 here but may get M1A1 for standardising with s (o.e.), 162 and 7.5, allow \pm , and setting equal to a z | value | | | | Only allow $0.24 \le z \le 0.26$ Condone e.g. 160 for 162 etc | | | | | A1 for awrt 164 (Correct answer only scores B0M1A1) | | | | (c) | B1 for $(z =) \pm 1.2816$ (or better) seen. Allow awrt ± 1.28 if B0 scored in (b) for $z = \text{awrt} \pm 0.25$ | | | | | M1 for attempting to standardise with 162, 9 and μ , and setting equal to a z value $1.26 < z < 1.31$. Allow \pm here so signs don't have to be compatible. | e where | | | | 1^{st} A1 for a correct equation with compatible signs and $1.26 < z < 1.31$
2^{nd} A1 for awrt 174 (Correct answer only scores B0M1A1A1). Dependent on 1 st A1 | | | | | An equation $\frac{162 - \mu}{9} = 1.2816$ leading to an answer of $\mu = 174$ is A0A0 <u>unless</u> there is clear | | | | | correct working such as: $\frac{162 - x}{9} = 1.2816 \Rightarrow x = \dots : \mu = 162 + (162 - x) = 174 \text{ then award A1A1}$ | | | | NB | A common error is: $\frac{162 - \mu}{1} = 1.2816$ followed by $\mu = 162 + 9 \times 1.2816 = 1.2816$ awrt 174. It gets | | | | 1410 | A0A0 | | | | Question
Number | Scheme | Marks | |--------------------|--|------------------------------| | 4. (a) | $\frac{127-100}{15}$ So $P(L > 127) = P(Z > 1.8)$ or $1-P(Z < 1.8)$ o.e. $= 1-0.9641 = \underline{0.0359}$ (awrt $\underline{0.0359}$) | M1
A1
A1 | | (b) | $\frac{d-100}{15} = -1.2816 \text{(Calculator gives } -1.2815515\text{)}$ $d = 80.776 \text{(awrt } \underline{80.8}\text{)}$ | (3)
M1, B1
A1 | | (c) | Require $P(L > 133 \mid L > 127)$ $= \left[\frac{P(L > 133)}{P(L > 127)} \right] = \frac{P(Z > 2.2)}{P(L > 127)}$ $= \left[\frac{1 - 0.9861}{1 - 0.9641} \right] = \frac{0.0139}{[0.0359]}$ $= 0.3871 = \text{awrt } \underline{\textbf{0.39}}$ | (3)
M1
dM1
A1
A1 | | S.C. | An attempt at P($L < 133 L > 127$) that leads to awrt 0.61 (M0M1A0A0) | (4)
10 | | (a) | Notes M1 for attempting to standardise with 127, 100 and 15. Allow \pm 1 st A1 for $Z > 1.8$. Allow a diagram but must have 1.8 and correct area indicated. Must have the Z so $P(L > 127)$ with or without a diagram is insufficient. May be in 2^{nd} A1 for awrt 0.0359 (calc. gives 0.035930266). Correct ans only 3/3. M1A0A | | | (b) | M1 for an attempt to standardise with 100 and 15 and set = \pm any z value (z > 1) B1 for $z = \pm 1.2816$ (or better) seen anywhere [May be implied by $80.776(72)$ or better seen] A1 for awrt 80.8 (can be scored for using 1.28 but then they get M1B0A1) The 80.8 must follow from correct working. If answer is awrt 80.8 and awrt 80.777 or 80.776 or better seen then award M1B1A1 | | | (c) | If answer is awrt 80.8 or 80.77 then award M1B0A1 (unless of course $z = 1.2816$ is seen) 1^{st} M1 for clear indication of correct conditional probability or attempt at correct ratio So clear attempt at $\frac{P(L>133)}{P(L>127)}$ is sufficient for the 1^{st} M1 2^{nd} dM1 dependent on 1^{st} M1 for $P(L>133)$ leading to $P(Z>2.2)$. 1^{st} A1 for 0.0139 or better seen coming from $P(Z>2.20)$. Dependent on both Ms 2^{nd} A1 for awrt 0.39. Both Ms required | | | ALT | If they assume Alice did not check that the phone was working you may see: $[P(L<127).0] + P(L>127).P(L>133 L>127)$ Provided the <u>conditional probability</u> is seen as part of this calculation the 1 st M1 can be scored and their final answer will be 0.0139(4/4) An answer of 0.0139 without sight of the conditional probability is 0/4. | | | Ques | tion | Scheme | Marks | | |------|---|---|------------------|--| | 6. | (a) | [Let X be the amount of beans in a tin. $P(X < 200) = 0.1$] | | | | | | $\frac{200 - \mu}{7.8} = -1.2816$ [calc gives 1.28155156] | M1 B1 | | | | | $\mu = 209.996$ awrt 210 | A1 | | | | (b) | $P(X > 225) = P\left(Z > \frac{225 - "210"}{7.8}\right)$ | (3)
M1 | | | | | = $P(Z > 1.92)$ or $1 - P(Z < 1.92)$ (allow 1.93)
= $1 - 0.9726$ = 0.0274 (or better) [calc gives 0.0272037] | A1 | | | | | = 0.0274 = awrt 2.7% allow 0.027 | A1 (3) | | | | (c) | [Let Y be the new amount of beans in a tin] $ \frac{210-205}{\sigma} = 2.3263 \text{or} \frac{200-205}{\sigma} = -2.3263 \text{[calc gives 2.3263478]} $ $ \sigma = \frac{5}{2.3263} $ | M1 B1 | | | | | $\sigma = \frac{5}{23263}$ | dM1 | | | | | $\sigma = 2.15$ (2.14933) | A1 (4) | | | | | | (10 marks) | | | | | Notes | | | | | Condone poor handling of notation if answers are correct but A marks must have correct working. | | | | | | (a) | M1 for an attempt to standardise (allow \pm) with 200 and 7.8 and set $= \pm$ any z value. | | | | | | B1 for $z = \pm 1.2816$ (or better used as a z)[May be implied by 209.996(102) or | better seen] | | | | | A1 for awrt 210 (can be scored for using 1.28 but then they get M1B0A1) | | | | | | The 210 must follow from correct working – sign scores A0 If answer is awrt 210 and 209.996 or better seen then award M1B1A1 | | | | | | z = 1.28 gives 209.984 and $z = 1.282$ gives 209.9996 and both score M1B0A1 | | | | | | If answer is awrt 210 or awrt 209.996 then award M1B0A1 (unless of course $z = 1.28$ | 2816 is seen) | | | | (b) | M1 for attempting to standardise with 225, their mean and 7.8. Allow \pm 1 st A1 for $Z >$ awrt 1.92/3. Allow a diagram but must have 1.92/3 and correct area indicated. Must have the Z so $P(X > 225)$ with or without a diagram is not sufficient. Award for $1 - 0.9726$ or $1 - 0.9732$ | | | | | | 2 nd A1 for 2.7 % or better (calculator gives 2.72) Allow awrt 0.027. Correct ans s | cores 3/3 | | | | (c) | 1 st M1 for an attempt to standardise with 200 or 210, 205 and σ and set = \pm any z val | ue ($ z > 2$) | | | | | B1 for $z = 2.3263$ (or better) and compatible signs. | 22 h aua | | | | | If B0 in (a) for using a value in [1.28, 1.29) but not using 1.2816: allow awrt 2.33 here 2^{nd} dM1 Dependent on the first M1 for correctly rearranging to make $\sigma =$ May be implied | | | | | | e.g. $\frac{5}{\sigma} = 2.32 \rightarrow \sigma = 2.16$ (M1A0) BUT must have $\sigma > 0$ | c implied | | | | | A1 for awrt 2.15. Must follow from correct working but a range of possible z va
NB $2.320 < z \le 2.331$ will give an answer of awrt 2.15 | lues will do. | |