Question Number	Scheme Marks
$\begin{array}{ll}8 . & \\ & \text { (a) }\end{array}$	$\begin{aligned} \mathrm{P}(X>168) & =\mathrm{P}\left(Z>\frac{168-160}{5}\right) \\ & =\mathrm{P}(Z>1.6) \\ & =0.0548 \end{aligned}$awrt 0.0548M1 A1 A1
(b)	$\begin{aligned} \mathrm{P}(X<w) & =\mathrm{P}\left(\mathrm{Z}<\frac{w-160}{5}\right) \\ \frac{w-160}{5} & =-2.3263 \\ w & =148.37 \end{aligned}$
(c)	$\frac{160-\mu}{\sigma}=2.3263$ M 1 $\frac{152-\mu}{\sigma}=-1.2816$ B 1 $160-\mu=2.3263 \sigma$ $152-\mu=-1.2816 \sigma$ awrt 2.22 A1 $8=3.6079 \sigma$ awrt 155 A1 $\sigma=2.21 \ldots$. (12) $\mu=154.84 \ldots$
	Notes
(a)	M1 for an attempt to standardize 168 with 160 and 5 i.e. $\pm\left(\frac{168-160}{5}\right)$ or implied by 1.6 $1^{\text {st }} \mathrm{A} 1$ for $\mathrm{P}(Z>1.6)$ or $\mathrm{P}(Z<-1.6)$ ie $z=1.6$ and a correct inequality or 1.6 on a shaded diagram Correct answer to (a) implies all 3 marks
(b)	M1 for attempting $\pm\left(\frac{w-160}{5}\right)=$ recognizable z value $(\|z\|>1)$ B1 for $z= \pm 2.3263$ or better. Should be $z=\ldots$ or implied so: $1-2.3263=\frac{w-160}{5}$ is M0B0 A1 for awrt 148. This may be scored for other z values so M1B0A1 is possible For awrt 148 only with no working seen award M1B0A1 M1 for attempting to standardize 160 or 152 with μ and σ (allow \pm) and equate to z value ($\|z\|>1$) $1^{\text {st }} \mathrm{B} 1$ for awrt ± 2.33 or ± 2.32 seen $2^{\text {nd }}$ B1 for awrt ± 1.28 seen $2^{\text {nd }}$ M1 for attempt to solve their two linear equations in μ and σ leading to equation in just one variable $1^{\text {st }} \mathrm{A} 1$ for $\sigma=$ awrt 2.22. Award when $1^{\text {st }}$ seen $2^{\text {nd }}$ A1 for $\mu=$ awrt 155 . Correct answer only for part (c) can score all 6 marks. NB $\sigma=2.21$ commonly comes from $z=2.34$ and usually scores M1B0B1M1A0A1 The A marks in (c) require both M marks to have been earned

Question	Scheme	Marks
6. (a)	[Let X be the amount of beans in a tin. $\mathrm{P}(X<200)=0.1$] $\begin{aligned} \frac{200-\mu}{7.8} & =-1.2816 \\ \mu & =209.996 \ldots . \end{aligned}$	M1 B1 A1
(b)	$\begin{aligned} \mathrm{P}(X>225) & =\mathrm{P}\left(Z>\frac{225-" 210 "}{7.8}\right) \\ & =\mathrm{P}(Z>1.92) \quad \underline{\text { or }} 1-\mathrm{P}(Z<1.92) \\ & =1-0.9726 \quad=0.0274 \text { (or better) } \\ & =0.0274 \end{aligned}$ (allow 1.93) $=\text { awrt } \underline{\underline{2.7 \%}} \text { allow } \underline{0.027}$	M1
(c)	[Let Y be the new amount of beans in a tin] $\begin{aligned} \frac{210-205}{\sigma} & =2.3263 \quad \text { or } \quad \frac{200-205}{\sigma}=-2.3263 \quad \text { [calc gives } 2.3263478 \ldots \text {] } \\ \sigma & =\frac{5}{2.3263} \\ \sigma & =2.15 \quad(2.14933 \ldots) \end{aligned}$	M1 B1 dM1 A1 (4) (10 marks)
	Notes	
(a)	Condone poor handling of notation if answers are correct but A marks must have correct working. M1 for an attempt to standardise (allow \pm) with 200 and 7.8 and set $= \pm$ any z value ($\|z\|>1$) B1 for $z= \pm 1.2816$ (or better used as a z)[May be implied by 209.996(102...) or better seen] A1 for awrt 210 (can be scored for using 1.28 but then they get M1B0A1) The 210 must follow from correct working - sign scores A0 If answer is awrt 210 and $209.996 \ldots$ or better seen then award M1B1A1 $z=1.28$ gives 209.984 and $z=1.282$ gives 209.9996 and both score M1B0A1 If answer is awrt 210 or awrt 209.996 then award M1B0A1 (unless of course $z=1.2816$ is seen)	
(b)	M1 for attempting to standardise with 225, their mean and 7.8. Allow \pm $1^{\text {st }} \mathrm{A} 1$ for $\mathrm{Z}>$ awrt $1.92 / 3$. Allow a diagram but must have $1.92 / 3$ and correct area indicated. Must have the Z so $\mathrm{P}(X>225)$ with or without a diagram is not sufficient. Award for 1-0.9726 or 1-0.9732 $2^{\text {nd }} \mathrm{A} 1$ for 2.7% or better (calculator gives $2.72 \ldots$) Allow awrt 0.027 . Correct ans scores $3 / 3$ $1^{\text {st }}$ M1 for an attempt to standardise with 200 or 210, 205 and σ and set $= \pm$ any z value $(\|z\|>2)$ B1 for $z=2.3263$ (or better) and compatible signs. If B0 in (a) for using a value in $[1.28,1.29$) but not using 1.2816: allow awrt 2.33 here $2^{\text {nd }}$ dM1 Dependent on the first M1 for correctly rearranging to make $\sigma=\ldots$ May be implied e.g. $\frac{5}{\sigma}=2.32 \rightarrow \sigma=2.16$ (M1A0) BUT must have $\sigma>0$ A1 for awrt 2.15. Must follow from correct working but a range of possible z values will do. NB $2.320<z \leq 2.331$ will give an answer of awrt 2.15	
(c)		

