Speed, Density Exercise
Bill drove from A to B a distance of 86 tm in 1 hr 30 min . He drove from B to C in 2 hr 20 ma at a space of $90 \mathrm{~km} / \mathrm{hr}$. He drove from C toll a distance of 100 Km at $80 \mathrm{~km} / \mathrm{h}$.
Find his average speed from A to D

$$
\begin{aligned}
& \text { Average Speed }=\frac{\text { Total Distance }}{\text { Total Time }} \\
& \text { Steel Tine Diffane } \\
& A \rightarrow B \quad 1 \mathrm{~h} .30 \mathrm{~m} \quad 86 \mathrm{~km} \\
& B \rightarrow C \quad 90 \mathrm{~K} / \mathrm{Ch} 2 \mathrm{kw} 20 \mathrm{~m} \quad 210 \mathrm{~km}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Average pard }=\frac{396}{\frac{61}{12}}=77.9 \mathrm{Ku} / \mathrm{hr}
\end{aligned}
$$

How long in hours and minutes wold be a 593 km journey travelling at $118 \mathrm{Km} / \mathrm{hr}$

$$
\text { Time }=\frac{\text { Dist }}{\text { sped }}=\frac{593}{114}=5.20175 \text { hrs }
$$

$$
=5 \text { hes } 12 \mathrm{~min}
$$

To convert 5.20175 hes into hours and minute fist subtract the 5 wis on calculates $t>$ tana 0.20175 of an hour. Multiply this hs 60 to torn in to minutes

$$
0-20175 \times 63=12.105 \text { so } 12 \mathrm{kin}
$$

Answer 5 ks 12 min
Density A compound D is made from A, B and C
50 g of A is used which has density $4.2 \mathrm{~g} / \mathrm{cm}^{3}$ 100 g of B is used which hus volume $36 \mathrm{~cm}^{3}$ $85 \mathrm{~cm}^{3}$ of C is used which has density $2.5 \mathrm{~g} / \mathrm{cm}^{3}$
Find the density of compound D

$$
\begin{aligned}
& \text { Density }=\frac{\text { Total Muss }}{\text { Total Volume }} \\
& \begin{array}{cccl}
& \text { Density } & \text { Mass } & \text { Vol } \\
\text { A } & 4.2 \mathrm{~s} / \mathrm{a}^{3} & 50 \mathrm{~g} & 11.905 \mathrm{ca}^{3} \\
\text { B } & & 100 \mathrm{~g} & 36 \mathrm{ca}^{3} \\
C & 2.5 \mathrm{~g}_{\mathrm{a}} \mathrm{an}^{3} & 212.5 \mathrm{~g} & 85 \mathrm{ca}^{3}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\text { Totals } \overline{362.5 \mathrm{~g}} \overline{132.905 \mathrm{cn}^{3}} \\
\text { Density }=\frac{\pi}{V}=\frac{362.5}{132.905} \\
\text { Density }=2.73 \mathrm{~g} / \mathrm{cm}^{3}
\end{gathered}
$$

Page 304 Distance - Tine Graphs

