Momentum = mv trg ms-1

Impulse = FE = mV - mv = change in momentum Kgms-1 or Ns

Principle of Conservation of Linear Momentum PCLM Momentum before impact = Momentum after impact

Newtons law of restitution

speed of separation = e OSESI

speed of approach

Kinetic Energy = 2 mv2 Joules

Example 0.07 Kg Oilkg

A B

Ams 8 ms

< V_A < V_B

tre direction

mava + movs = mava + movs

$$-0.07x4+0.1x8 = 0.07V_A + 0.1V_B$$

$$0.52 = 0.07V_A + 0.1V_B$$

$$52 = 7V_A + 10V_B$$

Law of Restilution

$$e = \frac{5}{12} = \frac{\text{speed of separation}}{\text{speed of approach}}$$

$$\frac{5}{12} = \frac{V_A - V_B}{4 + 8}$$

$$\frac{5}{12} = \frac{V_A - V_S}{12}$$

Sub (2 0

$$52 = 7(5+V_8) + 10V_8$$

 $52 = 35 + 7V_8 + 10V_8$
 $17 = 17V_8$
 $V_8 = 1 = 17$

$$V_8 = 5 - 1$$
 $V_8 = 4 ns^{-1}$

Initial KE =
$$\frac{1}{2} h_A v_A^2 + \frac{1}{2} m_6 v_6^2$$

= $\frac{1}{2} \times 0.67 \times 4^2 + \frac{1}{2} \times 0.1 \times 8^2$
= 3.76 J

Final KE

$$= \frac{1}{2} \times 0.07 \times 4^{2} + \frac{1}{2} \times 0.1 \times 1^{2}$$

$$= 0.617$$

- 1 A sledge and a child sitting on it have a combined mass of 29.5 kg. The sledge slides on horizontal ice with negligible resistance to its movement.
 - (i) While at rest, the sledge is hit directly from behind by a ball of mass 0.5 kg travelling horizontally at $10 \,\mathrm{m \, s^{-1}}$. The coefficient of restitution in the collision is 0.8. After the impact the speeds of the sledge and the ball are $V_1 \,\mathrm{m \, s^{-1}}$ and $V_2 \,\mathrm{m \, s^{-1}}$ respectively.

Calculate V_1 and V_2 and state the direction in which the ball is travelling after the impact. [7]

- (ii) While at rest, the sledge is hit directly from behind by a snowball of mass 0.5 kg travelling horizontally at 10 m s⁻¹. The snowball sticks to the sledge.
 - (A) Calculate the velocity with which the combined sledge and snowball start to move. [3]
 - (B) The child scoops up the 0.5 kg of snow and drops it over the back of the sledge. What happens to the velocity of the sledge? Give a reason for your answer. [2]
- (iii) In another situation, the sledge is travelling over the ice at $2 \,\mathrm{m\,s^{-1}}$ with $10.5 \,\mathrm{kg}$ of snow on it (giving a total mass of $40 \,\mathrm{kg}$). The child throws a snowball of mass $0.5 \,\mathrm{kg}$ from the sledge, parallel to the ground and in the positive direction of the motion of the sledge. Immediately after the snowball is thrown, the sledge has a speed of $V \,\mathrm{m\,s^{-1}}$ and the snowball and sledge are separating at a speed of $10 \,\mathrm{m\,s^{-1}}$.

Draw a diagram showing the velocities of the sledge and snowball before and after the snowball is thrown.

Calculate V. [5]

mech 2

$$\frac{10 \text{ NS}^{-1}}{0.5 \text{ M/S}}$$

$$\frac{29.5 \text{ M/S}}{V_1}$$

$$\frac{10 \times 0.5}{V_2} = 0.5 \text{ V}_2 + 29.5 \text{ V}_1$$

$$5 = 0.5 \text{ V}_2 + 29.5 \text{ V}_1$$

$$V_1 - V_2 = 8$$

$$5 = 0.5 V_2 + 29.5(8+V_2)$$

$$V_2 = -\frac{231}{30} = -7.7 \text{ hs}^{-1}$$

$$= 10 \times 0.5 = 30 \vee$$

sledge continues at same velocity initially since snowball his monedown 05xt sledge him momentur 2005xt No external force on sledge