Differentiation

Rates of Change

Differentiation - Rates of Change

Water flows into a bowl at a constant rate of $10 \,\mathrm{cm}^3 \,\mathrm{s}^{-1}$ (see Fig. 4).

Fig. 4

When the depth of water in the bowl is h cm, the volume of water is $V \text{ cm}^3$, where $V = \pi h^2$. Find the rate at which the depth is increasing at the instant in time when the depth is 5 cm. [5]

$$V = \pi h^{2} \qquad \frac{dV}{dh} = 2\pi h$$

$$Find \qquad \frac{dh}{dt} \qquad \text{when } h = 5\text{cm}$$

$$\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt}$$

$$= \frac{1}{dV} \times \frac{dV}{dt}$$

$$\frac{dh}{dt} = \frac{1}{2\pi h} \times 10$$

$$When h = 5\text{cm} \qquad \frac{dh}{dt} = \frac{1}{2\pi s} \times 10 \quad \text{cm s}^{-1}$$

$$= \frac{1}{\pi} \quad \text{cm s}^{-1}$$

$$= 0.318 \text{ cm s}^{-1}$$