1) T is inversely proportional to m. $T=6$ when $m=2$.
Find relationship between T and m.

$$
\begin{aligned}
& T=\frac{k}{m} \\
& \begin{array}{l}
7=6 \\
m=2
\end{array} \quad 6=\frac{k}{2} \\
& 6 \times 2=k \\
& k=12
\end{aligned}
$$

a) Find T when $m=4$

$$
\begin{aligned}
& T=\frac{12}{4} \\
& T=3
\end{aligned}
$$

b) Find m when $T=4.8$

$$
\begin{aligned}
4 \cdot 8 & =\frac{12}{m} \\
4 \cdot 8 m & =12 \\
m & =\frac{12}{4 \cdot 8} \\
m & =2.5
\end{aligned}
$$

4) M varies inversely with t^{2}
$M=9$ when $t=2$
Find relationship between M and t

$$
\begin{aligned}
& M=\frac{k}{t^{2}} \\
& M=9 \\
& \epsilon=2 \\
& q=\frac{k}{2^{2}} \\
& 9=\frac{k}{4} \\
& 9 \times 4=k \\
& 36=k \\
& \text { a) } \\
& \text { when } t=3 \\
& M=\frac{36}{3^{2}} \\
& M=\frac{36}{9} \\
& m=4
\end{aligned}
$$

b) When $M=1.44$

$$
\begin{aligned}
1.44 & =\frac{36}{t^{2}} \\
1.44 t^{2} & =36 \\
t^{2} & =\frac{36}{1.44} \\
t^{2} & =25 \\
t & =\sqrt{25} \\
t & =5
\end{aligned}
$$

