Vectors

$$
* A(2,3,1)
$$

A has position vector $2 \underline{i}+3 j+k$ or $\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$
where i is a unit vector in x-direction
j \qquad ! \qquad $y-d$ isecticon
k \qquad " z-direction

The position vector of a point A is the vector from the origin $(0,0,0)$ to $A(2,3,1)$

Finding vectors be tween points

$$
\begin{aligned}
& A(2,3,1) \\
& B(4-5,6) \\
& C(0,7,-2)
\end{aligned}
$$

$$
\begin{aligned}
& \underline{a}=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right) \quad \underline{b}=\left(\begin{array}{c}
4 \\
-5 \\
6
\end{array}\right) \\
& \overrightarrow{A B}=\overrightarrow{A B}+\overrightarrow{O B} \\
& =-\underline{a}+\underline{b} \quad=\left(\begin{array}{l}
-2 \\
-3 \\
-1
\end{array}\right)+\left(\begin{array}{c}
4 \\
-5 \\
6
\end{array}\right)=\left(\begin{array}{c}
2 \\
-8 \\
5
\end{array}\right) \\
& \overrightarrow{A B}=\left(\begin{array}{c}
2 \\
-8 \\
5
\end{array}\right)
\end{aligned}
$$

$$
\overrightarrow{B C}=\left(\begin{array}{c}
-4 \\
12 \\
-8
\end{array}\right) \quad \overrightarrow{A C}=\left(\begin{array}{c}
-2 \\
4 \\
-3
\end{array}\right)
$$

Vector Equation of a Line through A with position vector a and B with position vector b

$$
\begin{aligned}
& \underline{r}=\overrightarrow{O A}+\lambda \overrightarrow{A B} \\
& \underline{r}=\underline{a}+\lambda(\underline{b}-\underline{a}) \\
& \underline{r}=(1-\lambda) \underline{a}+\lambda \underline{b}
\end{aligned}
$$

Vector equs of limes are not unique We need any point on the line and a direction vector to define the line

Ext Find vector equ of line through

$$
A(2,4,5) \text { and } B(6,2,3)
$$

$$
\begin{aligned}
& \underline{r}=\overrightarrow{O A}+\lambda \overrightarrow{A B} \\
& \underline{r}=\left(\begin{array}{l}
2 \\
4 \\
5
\end{array}\right)+\lambda\left(\begin{array}{c}
4 \\
-2 \\
-2
\end{array}\right)
\end{aligned}
$$

or $r=\left(\begin{array}{l}2 \\ 4 \\ 5\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)$
or

$$
\underline{v}=\left(\begin{array}{l}
6 \\
2 \\
3
\end{array}\right)+\lambda\left(\begin{array}{r}
2 \\
-1 \\
-1
\end{array}\right)
$$

All these represent the same line but λ would take different values in each equation to represent a specific point

Cartesian Form of a line in Space

$$
\begin{gathered}
\text { Suppose }\left(\begin{array}{l}
x \\
y \\
2
\end{array}\right)=r=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)+\lambda\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \\
x-a_{1}=\lambda v_{1} \\
y-a_{2}=\lambda v_{2} \\
2-a_{3}=\lambda v_{3} \\
\lambda=\frac{x-a_{1}}{v_{1}}=\frac{y-a_{2}}{v_{2}}=\frac{2-a_{3}}{v_{3}}
\end{gathered}
$$

There are two special cases when one or two of u_{1}, u_{2}, u_{3} are equal to zero

Examples
1)

$$
\begin{gathered}
r=\left(\begin{array}{l}
2 \\
5 \\
5
\end{array}\right)+\lambda\left(\begin{array}{l}
3 \\
8 \\
1
\end{array}\right) \\
\frac{x-2}{3}=\frac{y-5}{8}=\frac{z-7}{1}
\end{gathered}
$$

2) $\left(\begin{array}{l}x \\ y \\ 2\end{array}\right)=r=\left(\begin{array}{l}3 \\ 0 \\ 4\end{array}\right)+\lambda\left(\begin{array}{c}0 \\ -2 \\ 3\end{array}\right)$

$$
\begin{aligned}
& \frac{x-y}{0}=\frac{y-0}{-2}=\frac{2-4}{3} \\
& x=3
\end{aligned}
$$

Cartesian- Equ $\frac{y-0}{-2}=\frac{2-4}{3}$ and $x=3$
3)

$$
\begin{aligned}
& \left(\begin{array}{l}
x \\
3 \\
2
\end{array}\right)=r=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)+\lambda\left(\begin{array}{l}
0 \\
0 \\
5
\end{array}\right) \\
& \frac{x-x}{0}=\frac{y-3}{0}=\frac{2-4}{5}
\end{aligned}
$$

Cartesian Eqn $\quad x=2$ and $y=3$

Converting Cartesian form to Vector form
Ex

$$
\begin{aligned}
& \frac{x-5}{2}=\frac{y+3}{1}=\frac{z}{7} \\
& \underline{r}=\left(\begin{array}{c}
5 \\
-3 \\
0
\end{array}\right)+\lambda\left(\begin{array}{l}
2 \\
1 \\
7
\end{array}\right)
\end{aligned}
$$

Ex

$$
\begin{aligned}
& \frac{y-3}{2}=\frac{2+4}{5} \text { and } x=7 \\
& \underline{r}=\left(\begin{array}{c}
7 \\
3 \\
-4
\end{array}\right)+\lambda\left(\begin{array}{l}
0 \\
2 \\
5
\end{array}\right)
\end{aligned}
$$

Ex 3

$$
\begin{aligned}
& x=2 \quad \text { and } y=3 \\
& \underline{r}=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)+\lambda\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

could be any number

HWK C3/4 Boar Page 311 Ex $11 E Q 1,2,3$

