Equation of a plane

To find the vector form of the equation of the plane through the points A, B and C (with position vectors $\overrightarrow{\mathrm{OA}}=\mathbf{a}, \overrightarrow{\mathrm{OB}}=\mathbf{b}, \overrightarrow{\mathrm{OC}}=\mathbf{c}$), think of starting th the origin, travelling along OA to join the plane at A , and then any distance in each of the directions $\overrightarrow{A B}$ and $\overrightarrow{A C}$ to reach a general point R with position vector r, where

$$
\mathbf{r}=\overrightarrow{\mathrm{OA}}+\lambda \overrightarrow{\mathrm{AB}}+\mu \overrightarrow{\mathrm{AC}}
$$

$$
\begin{aligned}
& \text { Example in Vector Form } \\
& \text { Plane through } \quad A(4,2,0) \\
& B(3,1,1) \\
& C(4,-1,1) \\
& \underline{G}= \overrightarrow{O A}+\lambda \overrightarrow{A B}+\mu \overrightarrow{A C} \\
&\left(\begin{array}{l}
x \\
3 \\
2
\end{array}\right)=\underline{r}=\left(\begin{array}{l}
4 \\
2 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)+\mu\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)
\end{aligned}
$$

Cartesian Form

(1) + (3) $x+z=4+\mu$
(2) +(3) $\quad y+z=2-2 \mu$

Fron (1) $\mu=x+z-4$
sus $y+z=2-2(x+z-4)$
$y+z=2-2 x-2 z+8$
$2 x+y+3 z=10$

Direction Perpendicular to a Plane

$$
\underline{n}=\left(\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right)
$$

$$
\underline{r}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

$$
\begin{array}{r}
\overrightarrow{o A}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \\
(\underline{r}-\underline{a}) \cdot \underline{n}=0 \\
\underline{r} \cdot \underline{n}-\underline{a} \cdot \underline{n}=0 \\
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \cdot\left(\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right)=\underline{a} \cdot \underline{n} \\
n_{1} x+n_{2} y+n_{3} z=d
\end{array}
$$

where $d=\underline{q} \cdot \underline{n}$
Note the coefficcints of x, j anl z sive the components of a nosmal to the plane

Intersection of a Line and a Plane
Ex Final intersection of

$$
\begin{aligned}
& \underline{r}=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) \text { and } 5 x+y-z=1 \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
2+\lambda \\
3+2 \lambda \\
4-\lambda
\end{array}\right)
\end{aligned}
$$

Sub in plane

$$
\begin{aligned}
& 5(2+\lambda)+(3+2 \lambda)-(4-\lambda)=1 \\
& 10+5 \lambda+3+2 \lambda-4+\lambda=1
\end{aligned}
$$

$$
8 \lambda=-8
$$

$$
\lambda=-1
$$

Sub in line $\left(\begin{array}{c}x \\ y \\ 2\end{array}\right)=\left(\begin{array}{l}2-1 \\ 3-2 \\ 4+1\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 5\end{array}\right)$

Point of intersection $(1,1,5)$

Perpendicular Distance from a Point (α, β, γ)
to plane $n_{1} x+n_{2} y+n_{3} z+d=0$
is given by $\frac{\left|n_{1} \alpha+n_{2} \beta+n_{3} \gamma+d\right|}{\sqrt{n_{1}^{2}+n_{2}^{2}+n_{3}^{2}}}$

Angle between two planes

Find the angle between normals to the plane If obfose and asked for acute, subtract from 180°

Exercise ll F
Ql
i) $\begin{aligned} & A(4,1,3) \\ & B(6,48)\end{aligned} \quad r=\left(\begin{array}{l}4 \\ 1 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 3 \\ 5\end{array}\right)$
ii) $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}4+2 \lambda \\ 1+3 \lambda \\ 3+5 \lambda\end{array}\right)$

Sub in plane $x+2 y-2+3=0$

$$
\begin{gathered}
4+2 \lambda+2(1+3 \lambda)-(3+5 \lambda)+3=0 \\
4+2 \lambda+2+6 \lambda-3-5 \lambda+3=0 \\
3 \lambda=-6 \\
\lambda=-2 \\
\left(\begin{array}{c}
x \\
2 \\
2
\end{array}\right)=\left(\begin{array}{cc}
4-4 \\
1 & -6 \\
3-10
\end{array}\right)=\left(\begin{array}{c}
0 \\
-5 \\
-7
\end{array}\right) \\
\text { Intersect at } P(0,-5,-7)
\end{gathered}
$$

iii)

Line is $r=\left(\begin{array}{l}4 \\ 1 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$

Fend intesection

$$
\left(\begin{array}{c}
x \\
4 \\
z
\end{array}\right)=\left(\begin{array}{c}
4+\lambda \\
1+2 \lambda \\
3-\lambda
\end{array}\right)
$$

sus in pleme

$$
\begin{gathered}
4+\lambda+2((+2 \lambda)-(3-\lambda)+3=0 \\
4+\lambda+2+4 \lambda-3+\lambda+3=0 \\
6 \lambda=-6 \\
\lambda=-1
\end{gathered}
$$

$$
Q(3,-1,4)
$$

$$
A^{\prime}(2,-3,5)
$$

(v)

$$
\begin{aligned}
& \angle P A Q \rightarrow \\
& \cos \angle P A Q=\frac{\overrightarrow{A P} \cdot \overrightarrow{A Q}}{|\overrightarrow{A P}||\overrightarrow{A Q}|} \\
& \overrightarrow{A P}=\left(\begin{array}{l}
-4 \\
-6 \\
-10
\end{array}\right) \\
& \overrightarrow{A Q}=\left(\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right) \\
& \cos \angle P A Q=\frac{4+12-10}{\sqrt{16+36+100} \sqrt{1+4+1}}=\frac{6}{\sqrt{152} \sqrt{6}} \\
& \theta=78.5^{\circ}
\end{aligned}
$$

HWK Exercise IIF Q14

