DENSITY [ESTIMATED TIME: 75 minutes]

(+ IGCSE) EXAM QUESTION PRACTICE

[2 marks]

[2 marks]

1.

The mass of 4 m³ of copper is 35 800 kg. Calculate the density of the copper.

 $b = \frac{m}{V} = \frac{35800}{4} = 8950$

2.

3.

The density of steel is 8050 kg/m^3 . Work out the mass of 5 m³ of steel.

> M = Volxjen = 5x8050 = 40250

 40250 kg	
(2)	

8950 kg/m³

(2)

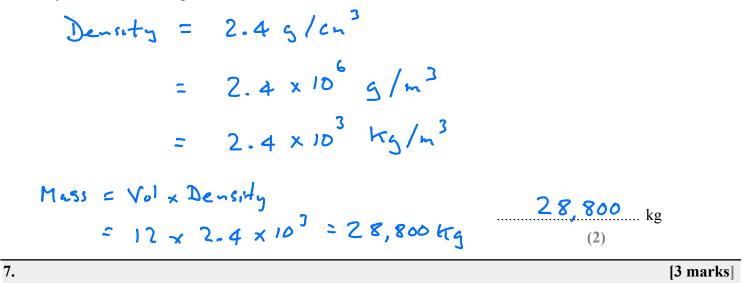
[2 marks]

A gold chain has a volume of 4 cm^3 . The density of gold is 19.3 grams per cm³. Calculate the mass of the gold chain.

> Mass = Vol x Density = 4 x 19.3 = 77.2

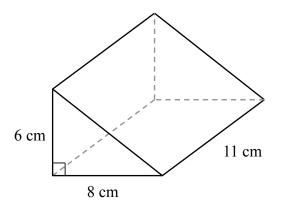
The mass of a standard gold bar is 1000 grams. The density of gold is 19.3 grams per cm^3 . Work out the volume of a standard gold bar.

The diagram shows a solid wooden block in the shape of a cuboid. The block is made from wood with density 0.58 g/cm^3 Work out the mass of the block.


4 cm

Mass = Vol x Density
=
$$7 \times 4 \times 2 \times 0.58$$

= 32.48
= 32.5 to 7 s.f.



The density of concrete is 2.4 g/cm^3 .

Work out the mass of a concrete slab which has a volume of 12 m^3 . Give your answer in kilograms.

The diagram shows a solid triangular prism.

The prism is made from steel.

The density of the steel is 7.9 grams per cm³.

Calculate the mass of the prism.

Give your answer in kilograms, correct to 3 significant figures.

$$M_{435} = Vol \times Density$$

$$264 \times 7.9 = 2085.6g$$

$$= 2.0856 kg$$

$$= 2.08 kg to 3 s.f.$$

$$\frac{2.09 kg}{3}$$

The diagram shows a solid rubber ball in the shape of a sphere.

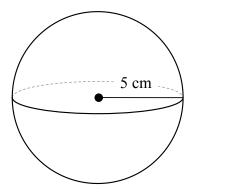
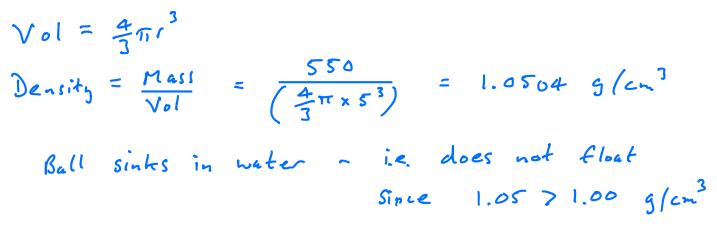
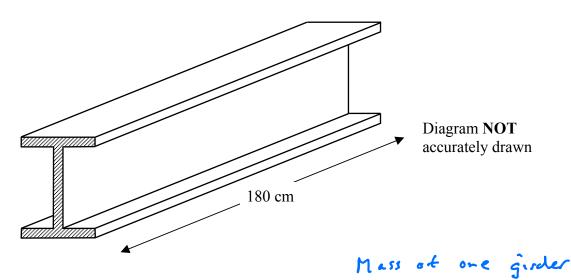


Diagram **NOT** accurately drawn


The radius of the ball is 5 cm.

The mass of the ball is 550 grams.

An object will only float in water if its density is less than 1.0 g/cm^3 .


Will this rubber ball float in water?

You must show clear calculations to justify your answer.

8.

The diagram shows a steel girder in the shape of a prism.

The length of the girder is 180 cm.

The cross sectional area of the girder is 18 cm^2 .

The steel has a density 7.8 g/cm^3 .

Justin has a pickup truck.

The maximum load that Justin's truck can carry is 500 kg.

Find the maximum number of these steel girders that Justin can carry in his truck, without exceeding the maximum load. = 25.272 Kg

Vol x Den

= 252729

18x180x7.8 g

2

2

 $\frac{500}{25.272} = 19.78$ Can carry 19 girders

(5)

- , 200g of aluminium and 200g of copper are mixed to make 400g of an alloy.
 - Aluminium has a density of 2.7 g/cm^3 .
 - Copper has a density of 8.9 g/cm³.
 - Work out the density of the alloy.

$$M \qquad \sqrt{\qquad D}$$
A luminium 200g 74.07 cm³ 2.7 g/cm³
Copper 200g 22.47 cm³ 8.9 g/cm³

$$\frac{1}{4005} = \frac{400}{96.54} = 4.14 g/cm3$$

$$\frac{4 - 14}{(4)} = \frac{g/cm^3}{(4)}$$

11.

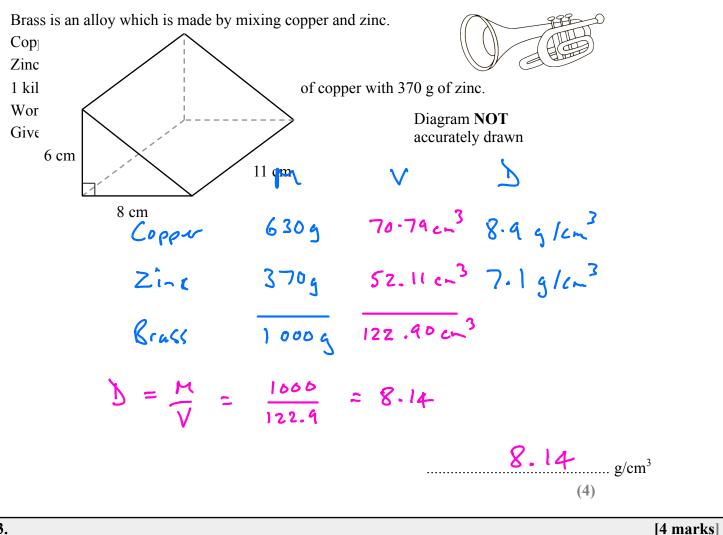
- . Liquid A has a density of 0.7 g/cm^3 .
 - Liquid B has a density of 1.6 g/cm^3 .

140 g of liquid A and 128 g of liquid B are mixed to make liquid C.

Γ

Work out the density of liquid C.

$$M \qquad V \qquad j$$


$$A \qquad 140g \qquad 200cm^{3} \qquad 0.7 g/cm^{3}$$

$$B \qquad \frac{128g}{268g} \qquad \frac{80cm^{3}}{280cm^{3}} \qquad 1.6 g/cm^{3}$$

$$J = \frac{M}{V} = \frac{268}{280} = 0.957 g/cm^{3}$$

$$\frac{0.957}{(4)} = g/cm^{3}$$

(4)

13.

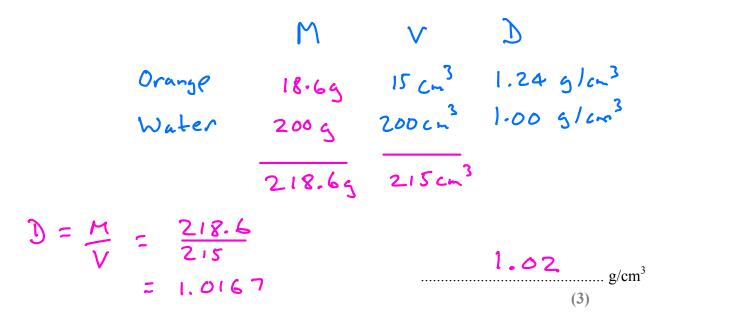
One sheet of A4 paper has dimensions 21.0 cm by 29.7 cm.

The paper has a mass of 80 g per m^2 .

Work out the total mass of 500 sheets of A4 paper.

Give your answer in kilograms, correct to 3 significant figures.

One sheet $0.21 \times 0.297 \text{ m}^2$ $= 0.06237 \text{ m}^2$ Mass = 80 x 0.06237 x 500 g sousheek = 2.494.8g = 2.49 Kg2.49 Kg . Mia makes an orange drink by mixing orange concentrate with water.


She mixes 15 ml of orange concentrate with 200 ml of water.

The density of the orange concentrate is 1.24 g/cm^3 .

The density of water is 1.00 g/cm^3 .

Work out the density of Mia's drink.

Give your answer correct to 2 decimal places.

15.

[4 marks]

The density of apple juice is 1.05 grams per cm³.

The density of fruit syrup is 1.4 grams per cm³.

The density of carbonated water is 0.99 grams per cm³.

 25 cm^3 of apple juice are mixed with 15 cm^3 of fruit syrup and 280 cm^3 of carbonated water to make a drink with a volume of 320 cm^3 .

Work out the density of the drink.

Ì

Give your answer correct to 2 decimal places.

$$M \qquad V \qquad D$$

$$apple \qquad 26.25g \qquad 25cn^{3} \qquad 1.05 \qquad g/cn^{3}$$

$$syrvp \qquad 21 \qquad 5 \qquad 15cn^{3} \qquad 1.4 \qquad g/cn^{3}$$

$$water \qquad 277.2 \qquad 5 \qquad 280 \ cm^{3} \qquad 0.99 \qquad g/cn^{3}$$

$$\overline{324.45g} \qquad \overline{320 \ cm^{3}}$$

$$f = \frac{324.45}{320} \qquad 1.01 \qquad g/cm^{3}$$

$$f = 1.0139$$

The densities of two different liquids *A* and *B* are in the ratio 11 : 9 The mass of 1 ml of liquid *B* is 1.2 g.

10 ml of liquid *A* is mixed with 20 ml of liquid *B* to make 30 ml of liquid *C*. Work out the density of liquid *C*.

Density
$$B = \frac{M}{V} = \frac{1.2}{1} = 1.2 \text{ g/cm}^3$$

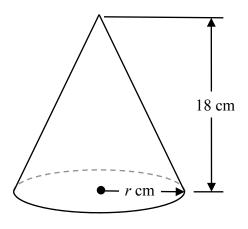
Density $A = 1.2 \times \frac{11}{4} = 1.467 \text{ g/cm}^3$
 $A = 1.679 \text{ Joch}^3 = 1.467 \text{ g/cm}^3$
 $B = \frac{24}{38.679} \frac{20 \text{ cm}^3}{1.2 \text{ g/cm}^3}$
 $J = \frac{M}{V} = \frac{38.67}{30} = \frac{1.289}{1.29 \text{ b} 35.6.(4)} \text{ g/cm}^3$
17. [5 marks]

A solid snooker ball is made in the shape of a sphere. The ball has a mass of 156 g measured to the nearest gram. Its diameter is 57 mm measured to the nearest millimetre. Find the lower bound for the density of the ball. Give your answer correct to 3 significant figures.

2

D

 $155.5g \le Mass \le 156.5g$ $56.5 m \le Jian \le 57.5 m$ $28.25 m \le radius \le 28.75 m$


lower bound

 $\frac{155.5}{\left(\frac{4}{3}\pi\times28.75^3\right)} = 1.562\times10^{-3} \text{g/mm}^3$ $= 1.562\times10^{-3} \text{x}1000 \text{ g/cm}^3$

. A solid metal bar is made in the shape of a cuboid.

..... g/cm³ (5)

A solid cone is made of wood.

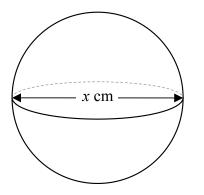
The height of the cone is 18 cm. The mass of the cone is 0.98 kg The wood has a density of 0.43 g/cm³ Find the radius of the cone. Give your answer correct to 2 significant figures. Diagram **NOT** accurately drawn

$$Y_{o}(= \frac{hass}{Dexs} = \frac{980}{0.43}$$

$$Vol = 2279 \text{ cm}^{3}$$

$$2279 = \frac{1}{3}\pi r^{2} \times 18$$

$$\frac{2279}{6\pi} = r^{2}$$


$$r = \sqrt{\frac{2279}{6\pi}}$$

$$r = 10.99 \text{ cm}$$

$$r = 10 \text{ cm}$$

..... cm (5)

. A solid sphere is made of glass.

The mass of the sphere is 58.4 g The density of the glass is 2.6 g/cm³ Find the diameter of the sphere. Give your answer correct to 3 significant figures. Diagram NOT accurately drawn $V_0 (= \frac{4}{3} \pi r^3)$ $V_0 (= \frac{M}{D} = \frac{58.4}{2.6} = \frac{292}{13}$ $\frac{292}{13} = \frac{4}{3} \pi r^3$ $\frac{292}{13} \times \frac{3}{4\pi} = r^3$ $r = 3\sqrt{\frac{292\times3}{13\times4\pi}}$ r = 1.75 cm

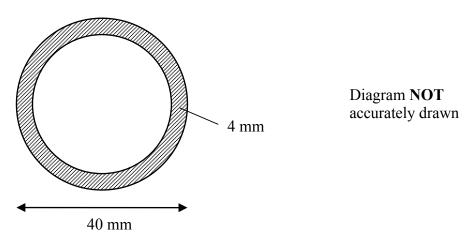
..... cm (5)

A solid cube has a mass of 9.8 g. It has a density of 0.92 g/cm^3 .

Find the surface area of the cube.

Give your answer correct to 2 significant figures.

$$Vol = \frac{M}{D} = \frac{q \cdot 8}{0 \cdot q 2} = 10.65217 \text{ cm}^{3}$$


$$Edgex \qquad x = \sqrt{10.65217}$$

$$x = 2.2 \text{ cm}$$

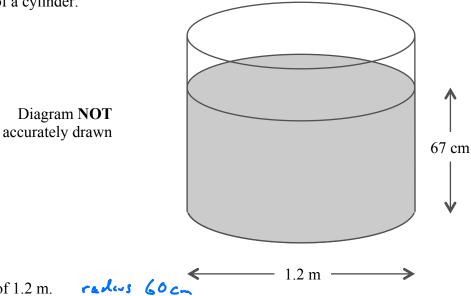
$$Each face = x^{2}$$
Surface area $6x^{2} = 6x2.z^{2}$

$$= 2q.04 \text{ cm}^{2}$$
(5)

A squash ball is made of rubber and is the shape of a sphere.

The mass of the ball 24 g.

The external diameter of the ball is 40 mm.


The thickness of the rubber is 4 mm.

Assuming that the mass of air inside the ball is negligible, calculate the density of the rubber.

External redius $r_1 = 20 \text{ hm}$ Internal redius $v_2 = 16 \text{ mm}$ Vol of rubber $= \frac{4}{3}\pi r_1^3 - \frac{4}{3}\pi r_2^3$ $= \frac{4}{3}\pi (20^3 - 16^3)$ $= 16353 \text{ mm}^3$ $= 16.353 \text{ cm}^3$ Density $= \frac{M}{V} = \frac{24}{16.353} = 1.47 \text{ s/cm}^3$

A 200 gallon steam kettle is used to make soup. The kettle is in the shape of a cylinder.

The kettle has a diameter of 1.2 m.

The depth of the soup in the kettle is 67 cm. The density of the soup is 1.15 g/cm^3 .

The soup is to be dispensed into tins that hold 400 g of soup each.

How many tins can be filled with the soup from the kettle?

You must show all your working.

$$V_{0}[\pi r^{2}L = \pi \times 60^{2} \times 67 = 757752 \text{ cm}^{3}$$

$$M = V_{0}I_{\times} \text{ Densety} \qquad \pi_{ess} = 757757 \times 1.15$$

$$= 8714.5 \text{ g}$$

$$\frac{8714.5}{400} = 2178.5375$$

$$2.178 \text{ finst can be filled}$$

