EXERCISE 40

For each of these sectors, calculate

i the arc length

ii the sector area

a

95°

5 cm

78°

d

Calculate the arc length and the area of a sector whose arc subtends an angle of 60° at the centre of a circle with a diameter of 12 cm. Give your answer in terms of π .

Calculate the total perimeter of each of these sectors.

22° 8.5 cm

Calculate the area of each of these sectors.

Calculate the area of the shaded shape giving your answer in terms of π .

ABCD is a square of side length 8 cm. APC and AQC are arcs of the circles with centres D and B. Calculate the area of the shaded part.

A pendulum of length 72 cm swings through an angle of 15°. Through what distance does the bob swing? Give your answer in terms of π .

Find i the perimeter and ii the area of this shape.

Calculate the arc length and the area of a sector whose arc subtends an angle of 60° at the centre of a circle with a diameter of 12 cm. Give your answer in terms of π .

Diameter = 12 cm

Area

$$\Rightarrow$$
 radius = 6 cm
 $= \pi r^2 \times \frac{60}{360}$

Arc length = $2\pi r \times \frac{60}{360}$
 $= \pi \times 6^2 \times \frac{1}{6}$
 $= 2\pi \times 6 \times \frac{1}{6}$

Area =
$$\pi r^2 \times \frac{60}{360}$$

= $\pi \times 6^2 \times \frac{1}{6}$
= $6\pi \text{ cm}^2$

Calculate the total perimeter of each of these sectors.

$$= 2\pi \times 11 \times \frac{3}{4} + 22$$

b)
$$2\pi r \times \frac{22}{360} + 8.5 + 8.5$$

$$= 2\pi \times 8.5 \times \frac{22}{360} + 17$$

Calculate the area of each of these sectors.

a)
$$\pi r^2 \times \frac{250}{360}$$

$$\pi r^2 \times \frac{310}{360}$$

$$\pi r^2 \times \frac{310}{360}$$
 C) $\pi r^2 \times \frac{240}{360}$ d) $\pi r^2 \times \frac{250}{360}$

$$= \pi \times 8^{2} \times \frac{310}{360} = \pi \times 3^{2} \times \frac{2}{3} = \pi \times 4^{2} \times \frac{250}{360}$$

Calculate the area of the shaded shape giving your answer in terms of π .

$$= \frac{\pi \times 12^{2}}{4} - \frac{1}{2} \times 12 \times 12 \quad \text{or} (36\pi - 72) \text{cm}^{2}$$

ABCD is a square of side length 8 cm. APC and AQC are arcs of the circles with centres D and B. Calculate the area of the shaded part.

$$= 8 \times 8 - \frac{\pi \times 8^2}{4} = 13.73 \, \text{cm}^2$$

Shaded area =
$$S_{2}$$
 vare - $*$ - $*$ - $*$ = $64 - 13.73 - 13.73$
= 36.54

A pendulum of length 72 cm swings through an angle of 15°. Through what distance does the bob swing? Give your answer in terms of π .

Find i the perimeter and ii the area of this shape.

i) Perimeter

$$= \frac{330}{360} \text{ of I cn radius circle}$$

$$+ \frac{30}{360} \text{ of A cm radius circle}$$

$$+ 3$$

$$+ 3$$

$$= \frac{330}{360} \times 2\pi \times 1 + \frac{30}{360} \times 2\pi \times 4 + 3 + 3$$

=
$$\frac{30}{360}$$
 of 4 cm radius circle + $\frac{330}{360}$ of 1 cm radius circle

$$= \frac{30}{360} \times \pi \times 4^{2} + \frac{330}{360} \times \pi \times 1^{2}$$