Volume and Surface Area

Cone

$$
\begin{aligned}
& \text { Volume }=\frac{1}{3} \pi r^{2} h \\
& \text { Curved Surface Area }=\pi r l
\end{aligned}
$$

Pyramid

$$
\text { Volume }=\frac{1}{3} \text { Ara of base } \times \text { height }
$$

Sphere

$$
\begin{aligned}
& \text { Volume }=\frac{4}{3} \pi r^{3} \\
& \text { Surface Area }=4 \pi r^{2}
\end{aligned}
$$

Examples

1) Find the volume and surface area of a sphere with radius 12 cm

$$
\begin{aligned}
\text { Vol }=\frac{4}{3} \pi r^{3} & =\frac{4}{3} \pi \times 12^{3} \\
& =2304 \pi=7238 \mathrm{~cm}^{3} \\
\text { Surface Area }=4 \pi r^{2} & =4 \times \pi \times 12^{2} . \\
& =576 \pi=1810 \mathrm{~cm}^{2}
\end{aligned}
$$

ii) Find the volume and surface area of the Earth considering it to be a sphere of radios 6370 Km

$$
\begin{aligned}
\text { Vol } & =\frac{4}{3} \pi \times 6370^{3} \\
& =1.08 \times 10^{12} \mathrm{~km}^{3} \\
& =1.08 \times 10^{12} \times 10^{9} \mathrm{~m}^{3} \\
& =1.08 \times 10^{21} \mathrm{~m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
\text { Surface Area } & =4 \times \pi \times 6370^{2} \\
& =510000000 \mathrm{Km}^{2} \\
& =5.1 \times 10^{8} \mathrm{~km}^{2} \\
& =5.1 \times 10^{8} \times 10^{6} \mathrm{~m}^{2} \\
& =5.1 \times 10^{14} \mathrm{~m}^{2}
\end{aligned}
$$

Ex3 A sphere has a volume of $1000 \mathrm{~cm}^{3}$ Find its surface area

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
3 V & =4 \pi r^{3} \\
\frac{3 V}{4 \pi} & =r^{3} \\
\sqrt[3]{\frac{3 V}{4 \pi}} & =r
\end{aligned}
$$

$$
\begin{aligned}
r & =\sqrt[3]{\frac{3000}{4 \pi}}=6.2035 \mathrm{~cm} \\
\text { Surface Area } & =4 \pi r^{2} \\
& =4 \times \pi \times 6.2035 \mathrm{~cm}^{3} \\
& =77.955 \\
& =78.0 \mathrm{~cm}^{2}
\end{aligned}
$$

Ext Find the Volume and total surface area of a solid cone radius 5 cm , height 12 cm

$$
\begin{aligned}
\text { Vol }=\frac{1}{3} \pi s^{2} L & =\frac{1}{3} \pi \times 5^{2} \times 12 \\
& =100 \pi \\
& =314 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{gathered}
5^{2}+12^{2}=C^{2} \\
C=13 \mathrm{~cm}
\end{gathered}
$$

$$
\begin{aligned}
\text { Surface Area } & =\text { base }+ \text { curved surface } \\
& =\pi r^{2}+\pi r e \\
& =\pi \times 5^{2}+\pi \times 5 \times 13 \\
& =90 \pi \\
& =283 \mathrm{cn}^{2}
\end{aligned}
$$

Area of Hexagon and Octagon by Measuring

Measure a, b, c
Each trapezium has parallel sides a, b and height $\frac{2}{2}$

Measure a, b height of trapezium

$$
h=\frac{c-a}{2}
$$

Octagon 2 trapeziums + Rectangle

