Leave
blank

oots.	
a) Show that <i>k</i> satisfies	
$k^2 + 2k - 3 > 0$	
	(3)
b) Find the set of possible values of k .	
rk Scheme on Next Page	(4)

Question Number	Scheme	Marks	
'			
			-
			_
8 . (a)	$b^2 - 4ac = (k-3)^2 - 4(3-2k)$	M1	
	$b^{2} - 4ac = (k-3)^{2} - 4(3-2k)$ $k^{2} - 6k + 9 - 4(3-2k) > 0 \text{or} (k-3)^{2} - 12 + 8k > 0 \text{or better}$	M1	
	$\frac{k^2 + 2k - 3 > 0}{}$	A1cso	(3)
(b)	(k+3)(k-1)[=0]	M1	
	Critical values are $k = 1$ or -3 (choosing "outside" region)	A1 M1	
	$\frac{k > 1 \text{or} k < -3}{k}$	A1 cao	(4)
			7
	<u>Notes</u>		
(a)	1^{st} M1 for attempt to find $b^2 - 4ac$ with one of b or c correct 2^{nd} M1 for a correct inequality symbol and an attempt to expand.		
	A1cso no incorrect working seen		
(b)	1^{st} M1 for an attempt to factorize or solve leading to $k = (2 \text{ values})$ 2^{nd} M1 for a method that leads them to choose the "outside" region. Can follow through their critical values.		
	2 nd A1 Allow "," instead of "or" > loses the final A1		
	\geq loses the final AT $1 < k < -3$ scores M1A0 unless a correct version is seen before or after this one.		