Constant Acceleration

SUVAT in 2 Dimensions

6 In this question, **i** and **j** are unit vectors east and north respectively. Position vectors are with respect to an origin O. Time *t* is in seconds.

A skater has a constant acceleration of $-2\mathbf{j}$ m s⁻². At t = 0, his velocity is $4\mathbf{i}$ m s⁻¹ and his position vector is $3\mathbf{j}$ m.

(i) Find expressions in terms of t for the velocity and the position vector of the skater at time t. [5]

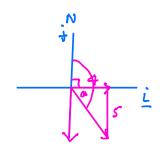
(ii) Calculate as a bearing the direction of motion of the skater when
$$t = 2.5$$
. [3]

$$\underline{a} = \begin{pmatrix} 0 \\ -2 \end{pmatrix} \qquad \underline{v} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \qquad \underline{r}_0 = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

$$\underline{v} = \underline{v} + \underline{a} t$$

$$\underline{v} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -2 \end{pmatrix} t$$

$$\underline{v} = 4 \underline{i} - 2 t \underline{i}$$


$$\frac{\Gamma}{\Gamma} - \frac{\Gamma}{0} = \frac{U}{U}t + \frac{1}{2}\frac{d^2}{2}t^2$$

$$\frac{\Gamma}{\Gamma} - \binom{0}{3} = \binom{4}{0}t + \frac{1}{2}\binom{0}{-2}t^2$$

$$\frac{\Gamma}{\Gamma} = \binom{4}{0}t + \binom{0}{-1}t^2 + \binom{0}{3}$$

$$\frac{\Gamma}{\Gamma} = 4t \cdot \frac{1}{2} + (3-t^2) \cdot \frac{1}{3}$$

When
$$\underline{V} = 4\underline{i} - 5\underline{j}$$

$$Q = \tan^{-1}(\frac{5}{4}) = 51.3^{\circ}$$

Bearing = 90 + 51.3