Compound Measures
Speed

Density

Pressure

$$
\begin{aligned}
\text { Pressure } & =\frac{\text { Force }}{\text { Area }} \\
\text { Area } & =\frac{\text { Force }}{\text { Pressure }} \\
\text { Force } & =\text { PressurexArea }
\end{aligned}
$$

Speed, Time, Distance
Average Speed $=\frac{\text { Total Distance }}{\text { Total Time }}$

Example
John drives for 2 hours at $40 \mathrm{~km} / \mathrm{hr}$ from A to B. He then drives 120 km from B to C at $30 \mathrm{~km} / \mathrm{hr}$.
What is John's average speed for the whole journey from A to C ?

$$
\begin{array}{r}
\text { Speed Time Distance } \\
A \in 0 B \quad 40 \mathrm{~km} / \mathrm{h} 2 \mathrm{hrs} \quad 80 \mathrm{~km} \\
B \text { to } C \quad 30 \mathrm{~km} / \mathrm{h} \quad \frac{4 \mathrm{hrs}}{6 \mathrm{hrs}} \frac{120 \mathrm{~km}}{200 \mathrm{~km}} \\
\\
\text { Average Speed }=\frac{\text { Total Distance }}{\text { Total Time }}=\frac{200}{6} \\
33 \frac{1}{3} \mathrm{Km} / \mathrm{hr}
\end{array}
$$

Ex 2 Bill travels 100 km from P to Q at $25 \mathrm{~km} / \mathrm{h}$. He then travels for 3 hours at $30 \mathrm{~km} / \mathrm{h}$ from Q to R. He then travels from R to S at $40 \mathrm{~km} / \mathrm{h}$ for $1 \frac{1}{2}$ hos.
Work out his average speed from P to S.

Speed Time Distance

$$
\begin{array}{llcc}
P \text { to Q } & 25 \mathrm{~km} / \mathrm{h} & 4 \mathrm{hrs} & 100 \mathrm{~km} \\
Q \text { to } R & 30 \mathrm{~km} / \mathrm{h} & 3 & 90 \mathrm{~km} \\
R \text { to } S & 40 \mathrm{~km} / \mathrm{h} & 1 \frac{1}{2} & 60 \mathrm{~km} \\
& & \frac{81}{2} \mathrm{hos} & 250 \mathrm{~km} \\
\text { Average Speed }= & \frac{\text { Total Distance }}{\text { Total Time }}=\frac{250}{8.5} \\
29.4 \mathrm{~km} / \mathrm{hr}
\end{array}
$$

Density , Mass, Volume
A has density $4 \mathrm{~g} / \mathrm{cm}^{3}$
B has density $6 \mathrm{~g} / \mathrm{cm}^{3}$
A compound C is made from $200 \mathrm{~cm}^{3}$ of A and $150 \mathrm{~cm}^{3}$ of B. Find the density of C

$$
\begin{aligned}
& \text { Density Mass Volume } \\
& \text { A } 4 \mathrm{~g} / \mathrm{cm}^{3} \quad 800 \mathrm{~g} \quad 200 \mathrm{~cm}^{3} \\
& B \frac{6 \mathrm{~g} / \mathrm{cm}^{3} \quad 900 \mathrm{~g}}{} \begin{array}{lll}
1700 \mathrm{~g} & 150 \mathrm{~cm}^{3} \\
& 350 \mathrm{~cm}^{3}
\end{array} \\
& \text { Density of } C=\frac{\text { Total Mass }}{\text { Total Volume }} \quad \frac{1700}{350} \\
& =4.86 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

$E \times 2 T$ is made from P, Q, R P has density $7 \mathrm{~g} / \mathrm{cm}^{3}$ and mass 56 g Q has density $10 \mathrm{~g} / \mathrm{cm}^{3}$ and volume of $8 \mathrm{~cm}^{3}$ R has mass of 80 g and volume $16 \mathrm{~cm}^{3}$ Find the density of T

Density Mass Volume

$$
\begin{aligned}
& \text { P } \quad 7 \mathrm{~g} / \mathrm{cm}^{3} \quad 56 \mathrm{~g} \quad 8 \mathrm{cn}^{3} \\
& \text { Q } \quad 10 \mathrm{~g} / \mathrm{cm}^{3} \quad 80 \mathrm{~g} \quad 8 \mathrm{~cm}^{3} \\
& R \frac{80 \mathrm{~g} \quad 16 \mathrm{~cm}^{3}}{216 \mathrm{~g}} 32 \mathrm{~cm}^{3} \\
& \text { Density of } T=\frac{\text { Total Mass }}{\text { Total Volume }}=\frac{216}{32} \\
& =6.75 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

Exercise 22.15 (Pink Book Page 465)
a) 100 m in $13 \mathrm{~s}=7.7 \mathrm{~m} / \mathrm{s}$
13) 200 m in $28 \mathrm{~s}=7.1 \mathrm{~m} / \mathrm{s}$
lc) 400 m in $58.4 \mathrm{~s}=6.8 \mathrm{~m} / \mathrm{s}$
ld) 1500 m in $4 \mathrm{~min} 52 \mathrm{~s}=5.1 \mathrm{~m} / \mathrm{s}$ 1500 m in 292 s

2a) 2 hrs at $80 \mathrm{~km} / \mathrm{h}=160 \mathrm{Km}$
2b) 7 has at $23 \mathrm{mph}=161$ middles
2c) 6 sec at $9 \mathrm{~m} / \mathrm{s}=54 \mathrm{~m}$
2d) 1 dayat $12 \mathrm{mph}=24 \times 12=288$ miles

