QT.
Prove that

$$
(2 n+3)^{2}-(2 n-3)^{2} \text { is a multiple of } 8
$$

for all positive integer values of n.

$$
\begin{aligned}
& =\left(4 n^{2}+12 n+9\right)-\left(4 n^{2}-12 n+9\right) \\
& =4 n^{2}+12 n+9-4 n^{2}+12 n-9 \\
& =24 n
\end{aligned}
$$

$=8(3 n) \quad 8$ is a factor So expression is a multiple of 8

Q11.
Prove algebraically that

$$
(2 n+1)^{2}-(2 n+1) \text { is an even number }
$$

for all positive integer values of n.

$$
\begin{aligned}
& =\left(4 n^{2}+4 n+1\right)-(2 n+1) \\
& =4 n^{2}+4 n+1-2 n-1 \\
& =4 n^{2}+2 n \\
& =2\left(2 n^{2}+n\right)
\end{aligned}
$$

2 is a factor \therefore expression is even

Q13.
Prove that the sum of the squares of any three consecutive odd numbers is always 11 more than a multiple of 12
Let 3 consecutive odd numbers be

$$
2 n+1,2 n+3,2 n+5
$$

$$
\begin{aligned}
& (2 n+1)^{2}+(2 n+3)^{2}+(2 n+5)^{2} \\
= & 4 n^{2}+4 n+1+4 n^{2}+12 n+9+4 n^{2}+20 n+25 \\
= & 12 n^{2}+36 n+35 \\
= & 12 n^{2}+36 n+24+11 \\
= & 12\left(n^{2}+3 n+2\right)+11
\end{aligned}
$$

This is 11 more than a multiple of 12

Q14.

Prove algebraically that the difference between any two different odd numbers is an even number.
Let $2 m+1,2 n+1$ be any odd integers (where m, n are integers)

$$
\begin{aligned}
& (2 m+1)-(2 n+1) \\
= & 2 m+1-2 n-1 \\
= & 2 m-2 n \\
= & 2(m-n)
\end{aligned}
$$

2 is a factor \therefore number iss even

Q9.

The product of two consecutive positive integers is added to the larger of the two integers.
Prove that the result is always a square number.

Let $n, n+1$ be consecutive integers

$$
\begin{aligned}
& (n+1)+n(n+1) \\
& =(n+1)(1+n)=(n+1)^{2} \text { a square } \\
& \text { number }
\end{aligned}
$$

or $(n+1)+n(n+1)$

$$
\begin{aligned}
& =n+1+n^{2}+1 \\
& =n^{2}+2 n+1=(n+1)^{2} \text { a square } \\
& =(n+1)(n+1) \text { number }
\end{aligned}
$$

