Circle continued

Calculate the area of the shaded part of each of these diagrams, giving your answers in terms of π .

Assume that the human waist is circular.

What are the distances around the waists of the following people?

Sue: waist radius of 10 cm

Dave: waist radius of 12 cm

Julie: waist radius of 11 cm

Brian: waist radius of 13 cm

b Compare differences between pairs of waist circumferences. What connection do they have to π

c What would be the difference in length between a rope stretched tightly round the Earth and another rope always held 1 m above it?

= 2511 - 911 = 16 T m2

11 5)

Shadel area = TIX52 - TIX22 = 250 - 41 = 21T cm2

(1)

Sheded area $\pi \times 5^2 - \pi \times 4^2$ = 2517 - 1617 = 9 TT Cm2

Assume that the human waist is circular.

What are the distances around the waists of the following people?

Sue: waist radius of 10 cm Dave: waist radius of 12 cm

Julie: waist radius of 11 cm

Brian: waist radius of 13 cm

b Compare differences between pairs of waist circumferences. What connection do they have to π

c What would be the difference in length between a rope stretched tightly round the Earth and another rope always held 1 m above it?

Sue
$$2\pi r = 2 \times \pi \times 10 = 62.8 \text{ cm}$$

Dave $2 \times \pi \times 12 = 75.4 \text{ cm}$

Tulie $2 \times \pi \times 11 = 69.1 \text{ cm}$

Brian $2 \times \pi \times 13 = 81.7 \text{ cm}$

211 cm difference for each I cm increase

If radio of Earth = R

Difference = 2TT (R+1) - ZTR = 211R + 211 - 211R = 2 T m

EXERCISE

i the arc length

ii the sector area

a

95°

78°

12 cm

u

Calculate the arc length and the area of a sector whose arc subtends an angle of 60° at the centre of a circle with a diameter of 12 cm. Give your answer in terms of π .

Calculate the total perimeter of each of these sectors.

11 cm

22° 8.5 cm

Calculate the area of each of these sectors.

50° 8 cm

Calculate the area of the shaded shape giving your answer in terms of π .

ABCD is a square of side length 8 cm. APC and AQC are arcs of the circles with centres D and B. Calculate the area of the shaded part.

A pendulum of length 72 cm swings through an angle of 15°. Through what distance does the bob swing? Give your answer in terms of π .

Find i the perimeter and ii the area of this shape.

For each of these sectors, calculate i the arc length

ii the sector area

130°

a i)
$$Arc = 2\pi r \times \frac{40}{360} = 2\pi \times 8 \times \frac{40}{360} = 5.59 cm$$

ii) Area =
$$\pi r^2 \times \frac{40}{360} = \pi \times 8^2 \times \frac{40}{360} = 22.3 \text{ cm}^2$$

ii) Area =
$$\pi r^2 \times \frac{95}{360} = \pi \times 5^2 \times \frac{95}{360} = 20.7 \text{ cm}^2$$

d i)
$$Arc = 2\pi r \times \frac{130}{360} = 2\pi \times 7 \times \frac{130}{360} = 15.9 \text{ cm}$$

ii) Area =
$$\pi r^2 \times \frac{130}{360} = \pi \times 7^2 \times \frac{130}{360} = 55.6 \text{ cm}^2$$