Proof by induction ME 8

1 Let $\mathrm{f}(n)=9^{n}-1$, where $n \in \mathbb{Z}^{+}$.
$\therefore f(1)=9^{1}-1=8$, which is divisible by 8 .
$\therefore \mathrm{f}(n)$ is divisible by 8 when $n=1$.
Assume that for $n=k$,
$\mathrm{f}(k)=9^{k}-1$ is divisible by 8 for $k \in \mathbb{Z}^{+}$.

$$
\begin{aligned}
& \therefore \mathrm{f}(k+1)= \\
& =9^{k+1}-1 \\
& \quad=9^{k} .9^{1}-1 \\
& \\
& =9\left(9^{k}\right)-1
\end{aligned} \quad \begin{aligned}
\therefore \mathrm{f}(k+1)-\mathrm{f}(k) & =\left[9\left(9^{k}\right)-1\right]-\left[9^{k}-1\right] \\
\quad= & 9\left(9^{k}\right)-1-9^{k}+1 \\
\quad= & 8\left(9^{k}\right)
\end{aligned}
$$

$\therefore \mathrm{f}(k+1)=\mathrm{f}(k)+8\left(9^{k}\right)$
As both $\mathrm{f}(k)$ and $8\left(9^{k}\right)$ are divisible by 8 then the sum of these two terms must also be divisible by 8 . Therefore $\mathrm{f}(n)$ is divisible by 8 when $n=k+1$.
If $\mathrm{f}(n)$ is divisible by 8 when $n=k$, then it has been shown that $\mathrm{f}(n)$ is also divisible by 8 when $n=k+1$. As $\mathrm{f}(n)$ is divisible by 8 when $n=1, \mathrm{f}(n)$ is also divisible by 8 for all $n \geqslant 1$ and $n \in \mathbb{Z}^{+}$ by mathematical induction.
$2 \mathbf{a} \quad \mathbf{B}^{2}=\mathbf{B} \mathbf{B}=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)=\left(\begin{array}{ll}1+0 & 0+0 \\ 0+0 & 0+9\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right)$
$\mathbf{B}^{3}=\mathbf{B}^{2} \mathbf{B}=\left(\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)=\left(\begin{array}{cc}1+0 & 0+0 \\ 0+0 & 0+27\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & 27\end{array}\right)$
b As $\mathbf{B}^{2}=\left(\begin{array}{cc}1 & 0 \\ 0 & 3^{2}\end{array}\right)$ and $\mathbf{B}^{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & 3^{3}\end{array}\right)$, we suggest that $\mathbf{B}^{n}=\left(\begin{array}{cc}1 & 0 \\ 0 & 3^{n}\end{array}\right)$.

2 c $n=1 ; \operatorname{LHS}=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)^{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$

$$
\operatorname{RHS}=\left(\begin{array}{ll}
1 & 0 \\
0 & 3^{1}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right)
$$

As LHS $=$ RHS, the matrix equation is true for $n=1$.
Assume that the matrix equation is true for $n=k$.
i.e. $\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)^{k}=\left(\begin{array}{cc}1 & 0 \\ 0 & 3^{k}\end{array}\right)$

With $n=k+1$ the matrix equation becomes

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right)^{k+1} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right)^{k}\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 3^{k}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+0 & 0+0 \\
0+0 & 0+3\left(3^{k}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & 3^{k+1}
\end{array}\right)
\end{aligned}
$$

Therefore the matrix is true when $n=k+1$.
If the matrix equation is true for $n=k$, then it is shown to be true for $n=k+1$. As the matrix
equation is true for $n=1$, it is now also true for all $n \geqslant 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
3 Basis: $n=1$: LHS $=3 \times 1+4=7 ;$ RHS $=\frac{1}{2} \times 1(3 \times 1+11)=7$
Assumption:

$$
\sum_{r=1}^{k}(3 r+4)=\frac{1}{2} k(3 k+11)
$$

Induction:

$$
\begin{aligned}
\sum_{r=1}^{k+1}(3 r+4) & =\sum_{r=1}^{k}(3 r+4)+3(k+1)+4 \\
& =\frac{1}{2} k(3 k+11)+3(k+1)+4=\frac{1}{2}\left(3 k^{2}+17 k+14\right) \\
& =\frac{1}{2}(k+1)(3(k+1)+11)
\end{aligned}
$$

So if the statement holds for $n=k$, it holds for $n=k+1$.
Conclusion: The statement holds for all $n \in \mathbb{Z}^{+}$.

4 a $\quad n=1 ;$ LHS $=\left(\begin{array}{cc}9 & 16 \\ -4 & -7\end{array}\right)^{1}=\left(\begin{array}{cc}9 & 16 \\ -4 & -7\end{array}\right)$

$$
=\left(\begin{array}{cc}
8(1)+1 & 16(1) \\
-4(1) & 1-8(1)
\end{array}\right)=\left(\begin{array}{cc}
9 & 16 \\
-4 & -7
\end{array}\right)
$$

As LHS $=$ RHS, the matrix equation is true for $n=1$.
Assume that the matrix equation is true for $n=k$.
i.e. $\left(\begin{array}{cc}9 & 16 \\ -4 & -7\end{array}\right)^{k}=\left(\begin{array}{cc}8 k+1 & 16 k \\ -4 k & 1-8 k\end{array}\right)$.

With $n=k+1$ the matrix equation becomes

$$
\begin{aligned}
\left(\begin{array}{cc}
9 & 16 \\
-4 & -7
\end{array}\right)^{k+1} & =\left(\begin{array}{cc}
9 & 16 \\
-4 & -7
\end{array}\right)^{k}\left(\begin{array}{cc}
9 & 16 \\
-4 & -7
\end{array}\right) \\
& =\left(\begin{array}{cc}
8 k+1 & 16 k \\
-4 k & 1-8 k
\end{array}\right)\left(\begin{array}{cc}
9 & 16 \\
-4 & -7
\end{array}\right) \\
& =\left(\begin{array}{cc}
72 k+9-64 k & 128 k+16-112 k \\
-36 k-4+32 k & -64 k-7+56 k
\end{array}\right) \\
& =\left(\begin{array}{cc}
8 k+9 & 16 k+16 \\
-4 k-4 & -8 k-7
\end{array}\right) \\
& =\left(\begin{array}{cc}
8(k+1)+1 & 16(k+1) \\
-4(k+1) & 1-8(k+1)
\end{array}\right)
\end{aligned}
$$

Therefore the matrix equation is true when $n=k+1$.
If the matrix equation is true for $n=k$, then it is shown to be true for $n=k+1$. As the matrix equation is true for $n=1$, it is now also true for all $n \geqslant 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
b $\operatorname{det}\left(\mathbf{A}^{n}\right)=(8 n+1)(1-8 n)--64 n^{2}$

$$
\begin{aligned}
& =8 n-64 n^{2}+1-8 n+64 n^{2} \\
& =1
\end{aligned}
$$

$\mathbf{B}=\left(\mathbf{A}^{n}\right)^{-1}=\frac{1}{1}\left(\begin{array}{cc}1-8 n & -16 n \\ 4 n & 8 n+1\end{array}\right)$
$\mathrm{So} \mathbf{B}=\left(\begin{array}{cc}1-8 n & -16 n \\ 4 n & 8 n+1\end{array}\right)$

5 a $\mathrm{f}(n+1)=5^{2(n+1)-1}+1$

$$
\begin{aligned}
& =5^{2 n+2-1}+1 \\
& =5^{2 n-1} \cdot 5^{2}+1 \\
& =24\left(5^{2 n-1}\right)+1
\end{aligned}
$$

$$
\begin{aligned}
\therefore \mathrm{f}(n+1)-\mathrm{f}(n) & =\left[25\left(5^{2 n-1}\right)+1\right]-\left[5^{2 n-1}+1\right] \\
& =25\left(5^{2 n-1}\right)+1-\left(5^{2 n-1}\right)-1 \\
& =24\left(5^{2 n-1}\right)
\end{aligned}
$$

Therefore, $\mu=24$.
b $\mathrm{f}(n)=5^{2 n-1}+1$, where $n \in \mathbb{Z}^{+}$.
$\therefore f(1)=5^{2(1)-1}+1=5^{1}+1=6$, which is divisible by 6 .
$\therefore \mathrm{f}(n)$ is divisible by 6 when $n=1$.
Assume that for $n=k$,
$\mathrm{f}(k)=5^{2 k-1}+1$ is divisible by 6 for $k \in \mathbb{Z}^{+}$.
Using (a) $\mathrm{f}(k+1)-\mathrm{f}(k)=24\left(5^{2 k-1}\right)$
$\therefore \mathrm{f}(k+1)=\mathrm{f}(k)+24\left(5^{2 k-1}\right)$
As both $\mathrm{f}(k)$ and $24\left(5^{2 k-1}\right)$ are divisible by 6 then the sum of these two terms must also be divisible by 6 . Therefore $\mathrm{f}(n)$ is divisible by 6 when $n=k+1$.
If $\mathrm{f}(n)$ is divisible by 6 when $n=k$, then it has been shown that $\mathrm{f}(n)$ is also divisible by 6 when $n=k+1$. As $\mathrm{f}(n)$ is divisible by 6 when $n=1 \mathrm{n}, \mathrm{f}(n)$ is also divisible by 6 for all $n \geqslant 1$ and $n \in \mathbb{Z}^{+}$ by mathematical induction.

6 Let $\mathrm{f}(n)=7^{n}+4^{n}+1$, where $n \in \mathbb{Z}^{+}$.
$\therefore f(1)=7^{1}+4^{1}+1=7+4+1=12$, which is divisible by 6 .
$\therefore \mathrm{f}(n)$ is divisible by 6 when $n=1$.
Assume that for $n=k$,
$\mathrm{f}(k)=7^{k}+4^{k}+1$ is divisible by 6 for $k \in \mathbb{Z}^{+}$.

$$
\begin{aligned}
& \therefore \mathrm{f}(k+1)=7^{k+1}+4^{k+1}+1 \\
& = \\
& =7^{k} .7^{1}+4^{k} \cdot 4^{1}+1 \\
& =7\left(7^{k}\right)+4\left(4^{k}\right)+1 \\
& \begin{aligned}
\therefore \mathrm{f}(k+1)-\mathrm{f}(k) & =\left[7\left(7^{k}\right)+4\left(4^{k}\right)+1\right]-\left[7^{k}+4^{k}+1\right] \\
& =7\left(7^{k}\right)+4\left(4^{k}\right)+1-7^{k}-4^{k}-1 \\
& =6\left(7^{k}\right)+3\left(4^{k}\right) \\
& =6\left(7^{k}\right)+3\left(4^{k-1}\right) \cdot 4^{1} \\
& =6\left(7^{k}\right)+12\left(4^{k-1}\right) \\
& =6\left[7^{k}+2(4)^{k-1}\right]
\end{aligned}
\end{aligned}
$$

$$
\therefore \mathrm{f}(k+1)=\mathrm{f}(k)+6\left[7^{k}+2(4)^{k-1}\right]
$$

As both $\mathrm{f}(k)$ and $6\left[7^{k}+2(4)^{k-1}\right]$ are divisible by 6 then the sum of these two terms must also be divisible by 6 .
Therefore $\mathrm{f}(n)$ is divisible by 6 when $n=k+1$.
If $\mathrm{f}(n)$ is divisible by 6 when $n=k$, then it has been shown that $\mathrm{f}(n)$ is also divisible by 6 when $n=k+1$. As $\mathrm{f}(n)$ is divisible by 6 when $n=1, \mathrm{f}(n)$ is also divisible by 6 for all $n \geqslant 1$ and $n \in \mathbb{Z}^{+}$ by mathematical induction.

7 Basis: $n=1$: LHS $=1 \times 5=5$; RHS $=\frac{1}{6} \times 1 \times 2 \times(2+13)=5$
Assumption:

$$
\sum_{r=1}^{k} r(r+4)=\frac{1}{6} k(k+1)(2 k+13)
$$

Induction:

$$
\begin{aligned}
\sum_{r=1}^{k+1} r(r+4) & =\sum_{r=1}^{k} r(r+4)+(k+1)(k+5) \\
& =\frac{1}{6} k(k+1)(2 k+13)+(k+1)(k+5) \\
& =\frac{1}{6}\left(2 k^{3}+21 k^{2}+49 k+30\right)=\frac{1}{6}(k+1)(k+2)(2(k+1)+13)
\end{aligned}
$$

So if the statement holds for $n=k$, it holds for $n=k+1$.
Conclusion: The statement holds for all $n \in \mathbb{Z}^{+}$.

8 a Basis: $n=1:$ LHS $=1+4=5 ;$ RHS $=\frac{1}{3} \times 1 \times 3 \times 5=5$
Assumption:
$\sum_{r=1}^{2 k} r^{2}=\frac{1}{3} k(2 k+1)(4 k+1)$
Induction:

$$
\begin{aligned}
\sum_{r=1}^{2(k+1)} r^{2} & =\sum_{r=1}^{2 k} r^{2}+(2 k+1)^{2}+(2 k+2)^{2} \\
& =\frac{1}{3} k(2 k+1)(4 k+1)+(2 k+1)^{2}+(2 k+2)^{2} \\
& =\frac{1}{3}\left(8 k^{3}+30 k^{2}+37 k+15\right) \\
& =\frac{1}{3}(k+1)(2(k+1)+1)(4(k+1)+1)
\end{aligned}
$$

So if the statement holds for $n=k$, it holds for $n=k+1$.
Conclusion: The statement holds for all $n \in \mathbb{Z}^{+}$.
b Using a and the formula for $\sum_{r=1}^{n} r^{2}$

$$
\begin{aligned}
& \frac{1}{6} \times 2 n(2 n+1)(4 n+1)=\frac{1}{6} k n(n+1)(2 n+1) \\
& 2 n(2 n+1)+(4 n+1)=k n(n+1)(2 n+1) \\
& 16 n^{3}+12 n^{3}+12 n^{2}+2 n=k\left(2 n^{3}+3 n^{2}\right) \\
& \Rightarrow k=\frac{2 n\left(8 n^{2}+6 n+1\right)}{n\left(2 n^{2}+3 n+1\right)}=\frac{2(2 n+1)(4 n+1)}{(2 n+1)(n+1)}=\frac{8 n+2}{n+1} \\
& \Rightarrow k n+k=8 n+2 \Rightarrow n(k-8)=2-k \Rightarrow n=\frac{2-k}{k-8}
\end{aligned}
$$

9 a Basis: $n=1:$ LHS $=$ RHS $=\left(\begin{array}{cc}2 c & 1 \\ 0 & c\end{array}\right)$
Assumption:
$\mathbf{M}^{k}=\mathbf{c}^{k}\left(\begin{array}{cc}2^{k} & \frac{2^{k}-1}{c} \\ 0 & 1\end{array}\right)$
Induction:

$$
\begin{aligned}
\mathbf{M}^{k+1} & =\mathbf{M}^{k}\left(\begin{array}{cc}
2 c & 1 \\
0 & c
\end{array}\right) \\
& =c^{k}\left(\begin{array}{cc}
2^{k} & \frac{2^{k}-1}{c} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
2 c & 1 \\
0 & c
\end{array}\right)=c^{k+1}\left(\begin{array}{cc}
2^{k} & \frac{2^{k}-1}{c} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & \frac{1}{c} \\
0 & 1
\end{array}\right) \\
& =c^{k+1}\left(\begin{array}{cc}
2^{k+1} & \frac{2^{k}+2^{k}-1}{c} \\
0 & 1
\end{array}\right)=c^{k+1}\left(\begin{array}{cc}
2^{k+1} & \frac{2^{k+1}-1}{c} \\
0 & 1
\end{array}\right)
\end{aligned}
$$

So if the statement holds for $n=k$, it holds for $n=k+1$.
Conclusion: The statement holds for all $n \in \mathbb{Z}^{+}$.
b Consider $n=1$: $\operatorname{det} \mathbf{M}=50 \Rightarrow 2 c^{2}=50$
So $c=5$, since c is +ve .

Challenge

a $\underline{\text { Basis: }} n=1:$ LHS $=$ RHS $=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
Assumption:
$\mathbf{M}^{k}=\left(\begin{array}{cc}\cos k \theta & -\sin k \theta \\ \sin k \theta & \cos k \theta\end{array}\right)$
Induction:

$$
\left.\begin{array}{l}
\mathbf{M}^{k+1}=\mathbf{M}^{k}\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)=\left(\begin{array}{cc}
\cos k \theta & -\sin k \theta \\
\sin k \theta & \cos k \theta
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \\
=\left(\begin{array}{cc}
\cos k \theta & \cos \theta \\
\sin k \theta & -\sin k \theta \sin \theta
\end{array}-\cos \theta \sin \theta\right. \\
\hline \cos k \theta \sin \theta \cos \theta \\
\sin k \theta \sin \theta+\cos k \theta \cos \theta
\end{array}\right) .
$$

So if the statement holds for $n=k$, it holds for $n=k+1$.
Conclusion: The statement holds for all $n \in \mathbb{Z}^{+}$.
b The matrix \mathbf{M} represents a rotation through angle θ, and so \mathbf{M}^{n} represents a rotation through angle $n \theta$.

