Revision - Compound Measures - Compound Interest
Speed, Time, Distance

$$
\begin{aligned}
& D=S \times T \\
& S=\frac{D}{T} \\
& T=\frac{D}{S}
\end{aligned}
$$

Average Speed $=\frac{\text { Total Distance }}{\text { Total Tine }}$

Example
John drives a distance of 100 km from A to B in 2 hours.
He then drives at $40 \mathrm{~km} / \mathrm{h}$ for 3 hours to go from B to C. Finally, he drives 120 km at $30 \mathrm{~km} / \mathrm{h}$ from C toll Find his average speed for the journey from A to B.

Speed Time Distance

Density, Mass, Volume

$$
\begin{aligned}
& \text { Mass }=\text { Density } \times \text { Volume } \\
& \text { Density }=\frac{\text { Mass }}{\text { Volume }} \\
& \text { Volume }=\frac{\text { Mass }}{\text { Density }}
\end{aligned}
$$

Average Density

$$
=\frac{\text { Total Mass }}{\text { Total Volume }}
$$

Example

1) has a density of $5 \mathrm{~g} / \mathrm{cm}^{3}$
E has a density of $11 \mathrm{~g} / \mathrm{cm}^{3}$
If 20 g of 1 are mixed with 44 g of E What is the density of the resulting compound

Density
D Mass
:---:
$5 \mathrm{~g} / \mathrm{cm}^{3}$
$11 \mathrm{~s} / \mathrm{cm}^{3}$
Totals
:---

Example 2 X and Y are mixed together to form compound Z
X has density $5.62 \mathrm{~g} / \mathrm{cm}^{3}$. 30 g of X are mixed with 40 g of 7 . The density of z is found to be $6.72 \mathrm{~g} / \mathrm{cm}^{3}$.
Find the density of Y

Density of $Y=7.87 \mathrm{~g} / \mathrm{cm}^{3}$

Exercise
8 g of A which has density $3 \mathrm{~g} / \mathrm{cm}^{3}$ is mixed with $5 \mathrm{~cm}^{3}$ of \mathbb{B} which has density $2 \mathrm{~g} / \mathrm{cm}^{3}$
Find the density, mass, and volume of the resulting compound C.

A	Density	Mass	$V .1$
B $/ \mathrm{cn}^{3}$	8 g	$2.67 \mathrm{~cm}^{3}$	
C	$2 \mathrm{~g} / \mathrm{cn}^{3}$	10 g	$5 \mathrm{~cm}^{3}$
	$2.35 \mathrm{~g} / \mathrm{cm}^{3}$	18 g	$7.67 \mathrm{~cm}^{3}$

Compound Interest
John receives $4 \%_{6}$ compound interest for 3 years Bill receives 2% first 5 , 3% sean 3 , 6% thine year If both boys invest $t 1000$, how much does each boy have at the end of third year.

John $1000 \times 1.04^{3}=t 1124.86$
Bill $1000 \times 1.02 \times 1.03 \times 1.06=41113.64$

Depreciation
A $f 10000$ depreciates at 12% per annum for 5 gears. How much is it worth then?

$$
10000 \times 0.88^{5}=t 5272.32
$$

