Intro to Probability
Scale

$\substack{\text { unlikely } \\ \text { impossible }}$	$50: 50$	likely
	$\frac{1}{2}$	
	0.5	
		50%

Record probabilities as fractions, decimals or percentages
Dice, Coins, Playing Cards

Roll a die
Coin

$$
\begin{array}{lll}
p(1)=\frac{1}{6} & p(4)=\frac{1}{6} & p(H)=\frac{1}{2} \\
p(2)=\frac{1}{6} & p(5)=\frac{1}{6} & p(T)=\frac{1}{2} \\
p(3)=\frac{1}{6} & p(6)=\frac{1}{6} &
\end{array}
$$

Sample Space

1	2	3
6	5	4

possible outcomes from rolling a die
Event A roll a 2
Event B roll a 3
are said to be mutually exclusive events
If mutually exclusive then the probability of A or B happening written as $P(A \cup B)$ is given by $P(A \cup B)=P(A)+P(B)$

In this case $P(A \cup B)=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}$

Two events C and D are said to be independent it the probability they both happen written as $P\left(C_{n} D\right)$ is given by

$$
P\left(C_{n} D\right)=P(C) \times P(D)
$$

This is the test for independence
Example Roll a die and spin a coin
Let A be event roll a 4
Let B be event spin a head

$$
P(A)=\frac{1}{6} \quad P(B)=\frac{1}{2}
$$

$P(A, B)$ possible equally likely outcomes

$H 1$	$T 1$
$H 2$	$T 2$
43	$T 3$
$1+4$	$T 8$
$H 5$	$T 5$
$H 6$	$T 6$

$$
\begin{aligned}
P(A) \times P(B) & =P(A, B) \\
\frac{1}{6} \times \frac{1}{2} & =\frac{1}{12}
\end{aligned}
$$

\therefore independent

If mutually exclusive events cover the whole sample space they are sand to be exhaustive.

Ex Rolling a die.
Let A be event an even number

$$
\therefore P(A)=\frac{3}{6}=\frac{1}{2}
$$

Let B be cunt number greater than 3

$$
\therefore \quad P(B)=\frac{3}{6}=\frac{1}{2}
$$

Are A and B independent?

$$
\begin{aligned}
& 1,2,3,4,5,6 \\
& P(A)=\frac{1}{2}, P(B)=\frac{1}{2} \quad P(A \cap B)=\frac{2}{6}=\frac{1}{3} \\
& \frac{1}{2} \times \frac{1}{2}=\frac{1}{4} \neq \frac{1}{3}
\end{aligned}
$$

\therefore not independent (or can say dependent)

Conditional Probability (A 2 syllabus)
$P(A \backslash B)$ means the probability of A given that B has happened

$$
P\left(A(B)=\frac{P(A \cap B)}{P(B)}\right.
$$

Notice that, $f A$ and B are independent

$$
P\left(A(B)=\frac{P(A) \times P(B)}{P(B)}=P(A)\right.
$$

Venn Diagrams
(A) B
A and B are mutually exclusive

$A \cup B$
Union

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

$A \cap B$
intersection

Ex 3
Cards Let A be event pock a club
Let B be event pick a 5
Are they independent when picking one card

$$
\begin{array}{ll}
P(A)=\frac{13}{52}=\frac{1}{4} & P(A) \times P(B)=P\left(A_{\cap} B\right) \\
P(B)=\frac{4}{52}=\frac{1}{13} & \frac{1}{4} \times \frac{1}{13}=\frac{1}{52} \\
P(A \cap B)=\frac{1}{52} &
\end{array}
$$

These events are independent
Let C be event a black cord
Are A and C independent?

$$
\begin{array}{ll}
P(A)=\frac{1}{4} & P(A \cap C)=\frac{13}{52}=\frac{1}{4} \\
P(C)=\frac{26}{52}=\frac{1}{2} \\
\frac{1}{4} \times \frac{1}{2} \neq \frac{1}{4}
\end{array}
$$

A and c are not independent
(A)
not A or A complement written as A^{\prime} or A^{C}

