The determinant of a square matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ written as $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$ is given by $a d-b c$ Examples $\quad \underline{M}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$

$$
\begin{aligned}
& \operatorname{det} \underline{M}=\left|\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right|=1 \times 4-2 \times 3=-2 \\
& P=\left(\begin{array}{ll}
3 & 4 \\
6 & 8
\end{array}\right) \quad \text { aet } \underline{P}=3 \times 8-4 \times 6=0
\end{aligned}
$$

3×3 Matrices

$$
\text { Let } \quad M=\left(\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right)
$$

then Jet $=a_{1}\left|\begin{array}{ll}b_{2} & c_{2} \\ b_{3} & c_{3}\end{array}\right|-b_{1}\left|\begin{array}{ll}a_{2} & c_{2} \\ a_{3} & c_{3}\end{array}\right|+c_{1}\left|\begin{array}{ll}a_{2} & b_{2} \\ a_{3} & b_{3}\end{array}\right|$

Example $\left|\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 3 & 4 & 0\end{array}\right|$

$$
\begin{aligned}
& =1\left|\begin{array}{ll}
1 & 2 \\
4 & 0
\end{array}\right|-2\left|\begin{array}{ll}
0 & 2 \\
3 & 0
\end{array}\right|+3\left|\begin{array}{ll}
0 & 1 \\
3 & 4
\end{array}\right| \\
& =-8+12-9 \\
& =-5
\end{aligned}
$$

Inverse of a Matrix
A square matrix \underline{M} has an inverse M^{-1} if and only if det $M \neq 0$, and we say it is non-singular then $\underline{M}^{-1}=\underline{M}^{-1} \underline{M}=I_{n}$

$$
I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Examples $\quad \underline{M}=$
Aside $\quad \underline{M}=\left(\begin{array}{ll}a & d \\ c & b\end{array}\right)$

$$
\begin{aligned}
M^{-1}=\frac{1}{d e t M}\left(\begin{array}{cc}
b & -d \\
-c & a
\end{array}\right)= & \frac{1}{a b-c d}\left(\begin{array}{cc}
b & -d \\
-c & a
\end{array}\right) \\
& \text { if get } M \neq 0
\end{aligned}
$$

$$
\begin{gathered}
M^{-1}=\frac{1}{-2}\left(\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right)=\left(\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right) \\
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right)=\left(\begin{array}{cc}
-2+3 & 1-1 \\
-6+6 & 3-2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

Simultaneous Equations

$$
\begin{aligned}
& 2 x+3 y=14 \\
& 5 x-2 y=16 \\
& \left(\begin{array}{rr}
2 & 3 \\
5 & -2
\end{array}\right)\binom{x}{y}=\binom{14}{16}
\end{aligned}
$$

Let $\underline{\mu}=\left(\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right)$
then $M\binom{x}{3}=\binom{14}{16}$

$$
\begin{aligned}
\underline{M}^{-1} \underline{M}\binom{x}{y} & =\underline{M}^{-1}\binom{14}{16} \\
\underline{I}_{2}\binom{1}{y} & =M^{-1}\binom{14}{16} \\
\binom{x}{y} & =M^{-1}\binom{14}{16}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{M}^{-1}=\frac{1}{-19}\left(\begin{array}{cc}
-2 & -3 \\
-5 & 2
\end{array}\right)=\frac{1}{19}\left(\begin{array}{cc}
2 & 3 \\
5 & -2
\end{array}\right) \\
& \binom{x}{y}=\frac{1}{19}\left(\begin{array}{cc}
2 & 3 \\
5 & -2
\end{array}\right)\binom{14}{16}=\frac{1}{19}\binom{76}{38}=\binom{4}{2}
\end{aligned}
$$

Exr Solve $-x+6 y-2 z=21$

$$
\begin{gathered}
6 x-2 y-z=16 \\
-2 x+3 y+5 z=24 \\
\left(\begin{array}{ccc}
-1 & 6 & -2 \\
6 & -2 & -1 \\
-2 & 3 & 5
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
2
\end{array}\right)=\left(\begin{array}{c}
21 \\
-16 \\
24
\end{array}\right) \\
\left(\begin{array}{c}
x \\
y \\
2
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 6 & -2 \\
6 & -2 & -1 \\
-2 & 3 & 5
\end{array}\right)\left(\begin{array}{c}
21 \\
-16 \\
24
\end{array}\right)=\left(\begin{array}{c}
-1 \\
4 \\
2
\end{array}\right)
\end{gathered}
$$

Ex bF Q4 Brown, Grey, Red

$$
\begin{aligned}
B+G+R & =2000 \\
B-G & =250 \\
.99 B+0.98 G+1.04 R & =2040
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
.94 & .981 .04
\end{array}\right)\left(\begin{array}{l}
\beta \\
G \\
R
\end{array}\right)=\left(\begin{array}{c}
2000 \\
250 \\
2040
\end{array}\right) \\
& \left(\begin{array}{l}
B \\
G \\
R
\end{array}\right)=()^{-1}\left(\begin{array}{c}
2000 \\
250 \\
2040
\end{array}\right)=\left(\begin{array}{c}
500 \\
250 \\
1250
\end{array}\right)
\end{aligned}
$$

