Angles
We often use Greek letters to represent angles $\alpha$ alpha
$\beta$ beta
$\gamma$ gamma
$\delta$ delta
o theta
$\phi \quad$ phi

Angle in a full circle $=360^{\circ}$
Scientific calculators can also measure angles in Grads (full circle $=400$ grads) and in Radians
(full circle $=2 \pi$ radians)
GCSE will only require the use of degrees.
Properties


Angles at a point sum to $360^{\circ}$

$$
\alpha+\beta+\gamma+\delta+\theta=360^{\circ}
$$



Angles on a straight line sum to $180^{\circ}$ $\alpha+\beta=180^{\circ}$

$$
\gamma+\delta+\theta=180^{\circ}
$$

Angles ot a Triangle sum to $180^{\circ}$


Let any triangle have angles $\alpha, \beta, \gamma$
Three clockwise turns at each vertex of the triangle constitute a turn through a full circles
(Therefore)

$$
\begin{gathered}
180-\alpha+180-\beta+180-\gamma=360^{\circ} \\
180+180+180-360=\alpha+\beta+\gamma \\
180^{\circ}=\alpha+\beta+\gamma
\end{gathered}
$$

Conclusion: The angles of any triangle sum to $180^{\circ}$
Polygons
A polygon is a planar closed shape made from straight line segments.
If all line segments are the same length and all angles are the same size, a polygon
is said to be regular. Otherwise it is irregular.
See Fact Sheet For Regular Polygons Regular Polygons

| Sides | Name | Extescor <br> Angl | Interior <br> Angle |
| :---: | :---: | :---: | :---: |
| 3 | Triangle | $120^{\circ}$ | $60^{\circ}$ |
| 4 | Quadrilateral | $90^{\circ}$ | $90^{\circ}$ |
| 5 | Pentagon | $72^{\circ}$ | $108^{\circ}$ |
| 6 | Hexagon | $60^{\circ}$ | $120^{\circ}$ |
| 7 | Heptagon | $51.4^{\circ}$ | $128.6^{\circ}$ |
| 8 | Octagon | $45^{\circ}$ | $135^{\circ}$ |
| 9 | Nonagon | $40^{\circ}$ | $140^{\circ}$ |
| $1 D$ | Decagon | $36^{\circ}$ | $144^{\circ}$ |

The exterior angle of a regular $n$-sided polygon $=\frac{360}{n}$.
The interior angle $=180^{\circ}$ - exterior angle

Interior Angles of a Polygon

Triangle sun to $180^{\circ}$
Quadrilateral sun $t 2 \times 180^{\circ}=360^{\circ}$


