**Small Angle Approximations** 

**1** When  $\theta$  is small enough for  $\theta^3$  to be ignored, find approximate expressions for the following.

(i) 
$$\frac{\theta \sin \theta}{1 - \cos \theta}$$
 (ii)  $2\cos(\frac{\pi}{3} + \theta)$ 

(iii) 
$$\cos\theta\cos2\theta$$
 (iv)  $\frac{\theta\tan\theta}{1-\cos2\theta}$ 

(v) 
$$\frac{\cos 4\theta - \cos 2\theta}{\sin 4\theta - \sin 2\theta}$$
 (vi)  $\sin(\alpha + \theta)\sin\theta$  (Note:  $\alpha$  is not small.)

- **2** (i) Find an approximate expression for  $\sin 2\theta + \tan 3\theta$  when  $\theta$  is small enough for  $3\theta$  to be considered as small.
  - (ii) Hence find

$$\lim_{\theta \to 0} \frac{\sin 2\theta + \tan 3\theta}{\theta}.$$

- **3** (i) Find an approximate expression for  $1 \cos \theta$  when  $\theta$  is small.
  - (ii) Hence find

$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{4\theta \sin \theta}.$$

- **4** (i) Find an approximate expression for  $\sin \theta \left[ \sin \left( \frac{\pi}{6} + \theta \right) \sin \frac{\pi}{6} \right]$  when  $\theta$  is small.
  - (ii) Find an approximate expression for  $1 \cos 2\theta$  when  $\theta$  is small.
  - (iii) Hence find

$$\lim_{\theta \to 0} \frac{\sin\theta \left[\sin\left(\frac{\pi}{6} + \theta\right) - \sin\frac{\pi}{6}\right]}{1 - \cos 2\theta}.$$

- **5** (i) Find an approximate expression for  $1 \cos 4\theta$  when  $\theta$  is small enough for  $4\theta$  to be considered as small.
  - (ii) Find an approximate expression for  $\tan^2 2\theta$  when  $\theta$  is small enough for  $2\theta$  to be considered as small.
  - (iii) Hence find

$$\lim_{\theta \to 0} \frac{1 - \cos 4\theta}{\tan^2 2\theta}.$$

**1** When  $\theta$  is small enough for  $\theta^3$  to be ignored, find approximate expressions for the following.

(i) 
$$\frac{\theta \sin \theta}{1 - \cos \theta}$$
 (ii)  $2\cos(\frac{\pi}{3} + \theta)$ 

(iii) 
$$\cos\theta\cos2\theta$$
 (iv)  $\frac{\theta\tan\theta}{1-\cos2\theta}$ 

(v) 
$$\frac{\cos 4\theta - \cos 2\theta}{\sin 4\theta - \sin 2\theta}$$
 (vi)  $\sin(\alpha + \theta)\sin\theta$  (Note: a is not small.)

1 ii) 
$$2 \cos \left(\frac{\pi}{3} + \theta\right)$$

$$= 2 \left[\cos \frac{\pi}{3} \cos \theta - \sin \frac{\pi}{3} \sin \theta\right]$$

$$\approx 2 \left[\frac{1}{2}\left(1 - \frac{\alpha^2}{2}\right) - \frac{\sqrt{3}}{2}\theta\right]$$

$$\approx 1 - \frac{\alpha^2}{2} - \sqrt{3}\theta$$

$$\frac{\cos 4\theta - \cos 2\theta}{\sin 4\theta - \sin 2\theta} \approx \frac{1 - \frac{(4\theta)^2}{2} - (1 - \frac{(2\theta)^2}{2})}{4\theta - 2\theta}$$

$$= \frac{1 - 8\theta^2 - 1 + 2\theta^2}{2\theta}$$

$$= -\frac{6\theta^2}{2\theta} = -3\theta$$

i) 
$$\frac{\partial \sin \theta}{1 - \cos \theta} \approx \frac{\theta \times \theta}{1 - \left(1 - \frac{\theta^2}{2}\right)} = \frac{\theta^2}{\frac{\theta^2}{2}} = 2$$

(iii) 
$$\cos \theta \cos 2\theta \approx \left(1 - \frac{\alpha^2}{2}\right) \left(1 - \frac{(20)^2}{2}\right)$$
  

$$= \left(1 - \frac{\alpha^2}{2}\right) \left(1 - 20^2\right)$$

$$= 1 - \frac{\alpha^2}{2} - 20^2 + 0^4$$

$$= 1 - \frac{50^2}{2} + 0^4$$

$$\frac{\partial \tan \theta}{1 - \cos 2\theta} \approx \frac{(\theta \times \theta)}{1 - (1 - (20)^2)} = \frac{\theta^2}{2\theta^2} = \frac{1}{2}$$

Vi) 
$$\sin(x+0)\sin\theta$$
  
=  $\left[\sin\alpha\cos\theta + \cos\alpha\sin\theta\right]\sin\theta$   
 $\approx \left[\sin\alpha\left(1-\frac{\sigma^2}{2}\right) + \cos\alpha\right]\alpha$   
=  $\left[\sin\alpha\left(1-\frac{\sigma^2}{2}\right) + \cos\alpha\right]\alpha$   
=  $\left[\sin\alpha\left(1-\frac{\sigma^2}{2}\right) + \cos\alpha\right]\alpha$   
=  $\left[\sin\alpha\left(1-\frac{\sigma^2}{2}\right) + \cos\alpha\right]\alpha$ 

- Find an approximate expression for  $\sin 2\theta + \tan 3\theta$  when  $\theta$  is small enough for  $3\theta$  to be considered as small.
  - (ii) Hence find

$$\lim_{\theta \to 0} \frac{\sin 2\theta + \tan 3\theta}{\theta}.$$

$$\sin 20 + \tan 30 \approx 20 + 30 = 50$$

$$\lim_{0 \to 0} \frac{\sin 20 + \tan 30}{0} = \frac{50}{0} = 5$$

**3** (i) Find an approximate expression for  $1 - \cos \theta$  when  $\theta$  is small.

(ii) Hence find

$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{4\theta \sin \theta}.$$

$$= \frac{\Theta^{2}}{2}$$

$$= \frac{\Theta^{2}}{2}$$

$$= \frac{\Theta^{2}}{2}$$

$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{40 \sin \theta} = \frac{\frac{\theta^2}{2}}{40^2} = \frac{1}{8}$$

**4** (i) Find an approximate expression for  $\sin \theta \left[ \sin \left( \frac{\pi}{6} + \theta \right) - \sin \frac{\pi}{6} \right]$  when  $\theta$  is small.

(ii) Find an approximate expression for  $1 - \cos 2\theta$  when  $\theta$  is small.

(iii) Hence find

$$\lim_{\theta \to 0} \frac{\sin\theta \left[\sin\left(\frac{\pi}{6} + \theta\right) - \sin\frac{\pi}{6}\right]}{1 - \cos 2\theta}$$

$$\lim_{\theta \to 0} \int \sin\left(\frac{\pi}{6} + \theta\right) - \sin\left(\frac{\pi}{6}\right) d\theta = \sin\left(\frac{\pi}{6}\right) d\theta$$

$$= \sin\theta \left[\sin\left(\frac{\pi}{6} + \theta\right) - \sin\left(\frac{\pi}{6}\right)\right]$$

$$= \sin\theta \left[\sin\left(\frac{\pi}{6} + \theta\right) - \sin\left(\frac{\pi}{6}\right)\right]$$

$$= -\cos^2\theta + \frac{\sin\theta}{4} + \frac{\sin\theta}{2} + \frac{\sin\theta}{$$

- 5 (i) Find an approximate expression for  $1 \cos 4\theta$  when  $\theta$  is small enough for  $4\theta$  to be considered as small.
  - (ii) Find an approximate expression for  $\tan^2 2\theta$  when  $\theta$  is small enough for  $2\theta$  to be considered as small.
  - (iii) Hence find

$$\lim_{\theta \to 0} \frac{1 - \cos 4\theta}{\tan^2 2\theta}.$$
i)  $1 - (\cos 4\theta) \approx 1 - (1 - (\cos 4\theta))^2$ 

$$= 86^2$$

(iii) 
$$\lim_{\theta \to 0} \frac{1 - \cos 4\theta}{\tan^2 2\theta} = \frac{86^2}{46^2} = 2$$



6) 3rd 
$$a + 2d = 24$$
 (1)
 $16^{44}$   $a + 9d = 3$  2

10) 
$$a+d = 11 \quad (1)$$

$$S_{n} = \frac{1}{2} \left[ 2a + (n-1)d \right]$$

$$S_{40} = \frac{40}{2} \left[ 2a + 39d \right]$$

$$S_{40} = 40a + 780d = 3030 \quad (2)$$

Subject 20(11-d) + 780d = 3030  

$$440 - 400 + 780d = 3030$$
  
 $740d = 2590$   
 $d = \frac{2590}{740} = 3.5$ 

$$a = 11 - 3.5$$
 $a = 7.5$ 

2) 
$$U_1 = 5$$
  $U_{n+1} = U_{n+3}$ 
 $U_2 = 8$ 
 $U_3 = 11$ 
 $AP = 4 = 5, d = 3$ 

$$S_n = \frac{h}{2} \left[ 2a + (n-1)d \right]$$
  
 $S_{50} = \frac{50}{2} \left[ 10 + 49 \times 3 \right] = 3925$